Skip to content
Snippets Groups Projects
NumericColumnModule.cpp 3.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Franck Dary's avatar
    Franck Dary committed
    #include "NumericColumnModule.hpp"
    #include "NeuralNetwork.hpp"
    
    NumericColumnModuleImpl::NumericColumnModuleImpl(std::string name, const std::string & definition)
    {
      setName(name);
      std::regex regex("(?:(?:\\s|\\t)*)Column\\{(.*)\\}(?:(?:\\s|\\t)*)Buffer\\{(.*)\\}(?:(?:\\s|\\t)*)Stack\\{(.*)\\}(?:(?:\\s|\\t)*)(\\S+)\\{(.*)\\}(?:(?:\\s|\\t)*)Out\\{(.*)\\}(?:(?:\\s|\\t)*)");
      if (!util::doIfNameMatch(regex, definition, [this,&definition](auto sm)
            {
              try
              {
                column = sm.str(1);
    
                for (auto & index : util::split(sm.str(2), ' '))
                  focusedBuffer.emplace_back(std::stoi(index));
    
                for (auto & index : util::split(sm.str(3), ' '))
                  focusedStack.emplace_back(std::stoi(index));
    
                auto subModuleType = sm.str(4);
                auto subModuleArguments = util::split(sm.str(5), ' ');
    
                auto options = MyModule::ModuleOptions(true)
                  .bidirectional(std::stoi(subModuleArguments[0]))
                  .num_layers(std::stoi(subModuleArguments[1]))
                  .dropout(std::stof(subModuleArguments[2]))
                  .complete(std::stoi(subModuleArguments[3]));
    
                int outSize = std::stoi(sm.str(6));
    
                if (subModuleType == "LSTM")
                  myModule = register_module("myModule", LSTM(1, outSize, options));
                else if (subModuleType == "GRU")
                  myModule = register_module("myModule", GRU(1, outSize, options));
    
    Franck Dary's avatar
    Franck Dary committed
                else if (subModuleType == "Concat")
                  myModule = register_module("myModule", Concat(1));
    
    Franck Dary's avatar
    Franck Dary committed
                else
                  util::myThrow(fmt::format("unknown sumodule type '{}'", subModuleType));
              } catch (std::exception & e) {util::myThrow(fmt::format("{} in '{}'",e.what(),definition));}
            }))
        util::myThrow(fmt::format("invalid definition '{}'", definition));
    }
    
    torch::Tensor NumericColumnModuleImpl::forward(torch::Tensor input)
    {
      auto context = input.narrow(1, firstInputIndex, getInputSize());
    
      auto values = torch::from_blob(context.data_ptr(), context.sizes(), context.strides(), torch::TensorOptions(torch::kDouble).requires_grad(false).device(NeuralNetworkImpl::device)).to(torch::kFloat).unsqueeze(-1).clone();
    
    Franck Dary's avatar
    Franck Dary committed
      return myModule->forward(values);
    }
    
    std::size_t NumericColumnModuleImpl::getOutputSize()
    {
      return myModule->getOutputSize(getInputSize());
    }
    
    std::size_t NumericColumnModuleImpl::getInputSize()
    {
      return focusedBuffer.size() + focusedStack.size();
    }
    
    void NumericColumnModuleImpl::addToContext(std::vector<std::vector<long>> & context, const Config & config)
    {
      std::vector<long> focusedIndexes;
    
      for (int index : focusedBuffer)
        focusedIndexes.emplace_back(config.getRelativeWordIndex(index));
    
      for (int index : focusedStack)
        if (config.hasStack(index))
          focusedIndexes.emplace_back(config.getStack(index));
        else
          focusedIndexes.emplace_back(-1);
    
      for (auto & contextElement : context)
        for (auto index : focusedIndexes)
        {
          double res = 0.0;
          if (index >= 0)
            res = std::stof(config.getAsFeature(column, index).get());
    
          contextElement.emplace_back(0);
          std::memcpy(&contextElement.back(), &res, sizeof res);
        }
    }
    
    
    void NumericColumnModuleImpl::registerEmbeddings()