Skip to content
Snippets Groups Projects
LSTMNetwork.cpp 9.15 KiB
Newer Older
  • Learn to ignore specific revisions
  • Franck Dary's avatar
    Franck Dary committed
    #include "LSTMNetwork.hpp"
    
    LSTMNetworkImpl::LSTMNetworkImpl(int nbOutputs, int unknownValueThreshold, int leftBorder, int rightBorder, int nbStackElements, std::vector<std::string> columns, std::vector<int> focusedBufferIndexes, std::vector<int> focusedStackIndexes, std::vector<std::string> focusedColumns, std::vector<int> maxNbElements, int leftWindowRawInput, int rightWindowRawInput) : unknownValueThreshold(unknownValueThreshold), focusedBufferIndexes(focusedBufferIndexes), focusedStackIndexes(focusedStackIndexes), focusedColumns(focusedColumns), maxNbElements(maxNbElements), leftWindowRawInput(leftWindowRawInput), rightWindowRawInput(rightWindowRawInput)
    {
      constexpr int embeddingsSize = 64;
      constexpr int hiddenSize = 1024;
      constexpr int contextLSTMSize = 512;
      constexpr int focusedLSTMSize = 64;
    
    Franck Dary's avatar
    Franck Dary committed
      constexpr int rawInputLSTMSize = 16;
    
    Franck Dary's avatar
    Franck Dary committed
    
      setLeftBorder(leftBorder);
      setRightBorder(rightBorder);
      setNbStackElements(nbStackElements);
      setColumns(columns);
    
      rawInputSize =  leftWindowRawInput + rightWindowRawInput + 1;
      if (leftWindowRawInput < 0 or rightWindowRawInput < 0)
        rawInputSize = 0;
      else
    
    Franck Dary's avatar
    Franck Dary committed
        rawInputLSTM = register_module("rawInputLSTM", torch::nn::LSTM(torch::nn::LSTMOptions(embeddingsSize, rawInputLSTMSize).batch_first(true).bidirectional(true)));
    
    Franck Dary's avatar
    Franck Dary committed
    
    
    Franck Dary's avatar
    Franck Dary committed
      int rawInputLSTMOutputSize = 0;
      if (rawInputSize > 0)
        rawInputLSTMOutputSize = (rawInputSize * rawInputLSTM->options.hidden_size() * (rawInputLSTM->options.bidirectional() ? 2 : 1));
    
    Franck Dary's avatar
    Franck Dary committed
    
      wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(maxNbEmbeddings, embeddingsSize)));
      embeddingsDropout = register_module("embeddings_dropout", torch::nn::Dropout(0.3));
      lstmDropout = register_module("lstm_dropout", torch::nn::Dropout(0.3));
      hiddenDropout = register_module("hidden_dropout", torch::nn::Dropout(0.3));
    
    Franck Dary's avatar
    Franck Dary committed
      contextLSTM = register_module("contextLSTM", torch::nn::LSTM(torch::nn::LSTMOptions(columns.size()*embeddingsSize, contextLSTMSize).batch_first(true).bidirectional(true)));
    
    Franck Dary's avatar
    Franck Dary committed
    
      int totalLSTMOutputSize = contextLSTM->options.hidden_size() * (contextLSTM->options.bidirectional() ? 4 : 1) + rawInputLSTMOutputSize;
    
      for (auto & col : focusedColumns)
      {
    
    Franck Dary's avatar
    Franck Dary committed
        lstms.emplace_back(register_module(fmt::format("LSTM_{}", col), torch::nn::LSTM(torch::nn::LSTMOptions(embeddingsSize, focusedLSTMSize).batch_first(true).bidirectional(true))));
    
    Franck Dary's avatar
    Franck Dary committed
        totalLSTMOutputSize += lstms.back()->options.hidden_size() * (lstms.back()->options.bidirectional() ? 4 : 1) * (focusedBufferIndexes.size()+focusedStackIndexes.size());
      }
    
      linear1 = register_module("linear1", torch::nn::Linear(totalLSTMOutputSize, hiddenSize));
      linear2 = register_module("linear2", torch::nn::Linear(hiddenSize, nbOutputs));
    }
    
    torch::Tensor LSTMNetworkImpl::forward(torch::Tensor input)
    {
      if (input.dim() == 1)
        input = input.unsqueeze(0);
    
      auto embeddings = embeddingsDropout(wordEmbeddings(input));
    
      auto context = embeddings.narrow(1, rawInputSize, columns.size()*(1+leftBorder+rightBorder));
    
    Franck Dary's avatar
    Franck Dary committed
      context = context.view({context.size(0), context.size(1)/(int)columns.size(), (int)columns.size()*(int)wordEmbeddings->options.embedding_dim()});
    
      auto elementsEmbeddings = embeddings.narrow(1, rawInputSize+context.size(1), input.size(1)-(rawInputSize+context.size(1)));
    
      std::vector<torch::Tensor> lstmOutputs;
    
      if (rawInputSize != 0)
      {
    
    Franck Dary's avatar
    Franck Dary committed
        auto rawLetters = embeddings.narrow(1, 0, rawInputSize);
    
    Franck Dary's avatar
    Franck Dary committed
        auto lstmOut = rawInputLSTM(rawLetters).output;
    
    Franck Dary's avatar
    Franck Dary committed
        lstmOutputs.emplace_back(lstmOut.reshape({lstmOut.size(0), -1}));
    
    Franck Dary's avatar
    Franck Dary committed
      }
    
      auto curIndex = 0;
      for (unsigned int i = 0; i < focusedColumns.size(); i++)
      {
        long nbElements = maxNbElements[i];
        for (unsigned int focused = 0; focused < focusedBufferIndexes.size()+focusedStackIndexes.size(); focused++)
        {
    
    Franck Dary's avatar
    Franck Dary committed
          auto lstmInput = elementsEmbeddings.narrow(1, curIndex, nbElements);
    
    Franck Dary's avatar
    Franck Dary committed
          curIndex += nbElements;
          auto lstmOut = lstms[i](lstmInput).output;
    
          if (lstms[i]->options.bidirectional())
    
    Franck Dary's avatar
    Franck Dary committed
            lstmOutputs.emplace_back(torch::cat({lstmOut.narrow(1, 0, 1).squeeze(1),lstmOut.narrow(1, lstmOut.size(1)-1, 1).squeeze(1)}, 1));
    
    Franck Dary's avatar
    Franck Dary committed
          else
    
    Franck Dary's avatar
    Franck Dary committed
            lstmOutputs.emplace_back(lstmOut.narrow(1, lstmOut.size(1)-1, 1).squeeze(1));
    
    Franck Dary's avatar
    Franck Dary committed
        }
      }
    
      auto lstmOut = contextLSTM(context).output;
      if (contextLSTM->options.bidirectional())
    
    Franck Dary's avatar
    Franck Dary committed
        lstmOutputs.emplace_back(torch::cat({lstmOut.narrow(1, 0, 1).squeeze(1),lstmOut.narrow(1, lstmOut.size(1)-1, 1).squeeze(1)}, 1));
       else
         lstmOutputs.emplace_back(lstmOut.narrow(1, lstmOut.size(1)-1, 1).squeeze(1));
    
    Franck Dary's avatar
    Franck Dary committed
    
      auto totalInput = lstmDropout(torch::cat(lstmOutputs, 1));
    
      return linear2(hiddenDropout(torch::relu(linear1(totalInput))));
    }
    
    std::vector<std::vector<long>> LSTMNetworkImpl::extractContext(Config & config, Dict & dict) const
    {
      if (dict.size() >= maxNbEmbeddings)
        util::warning(fmt::format("dict.size()={} > maxNbEmbeddings={}", dict.size(), maxNbEmbeddings));
    
      std::vector<long> contextIndexes = extractContextIndexes(config);
      std::vector<std::vector<long>> context;
      context.emplace_back();
    
      if (rawInputSize > 0)
      {
        for (int i = 0; i < leftWindowRawInput; i++)
          if (config.hasCharacter(config.getCharacterIndex()-leftWindowRawInput+i))
    
            context.back().push_back(dict.getIndexOrInsert(fmt::format("{}", config.getLetter(config.getCharacterIndex()-leftWindowRawInput+i))));
    
    Franck Dary's avatar
    Franck Dary committed
          else
            context.back().push_back(dict.getIndexOrInsert(Dict::nullValueStr));
    
        for (int i = 0; i <= rightWindowRawInput; i++)
          if (config.hasCharacter(config.getCharacterIndex()+i))
    
            context.back().push_back(dict.getIndexOrInsert(fmt::format("{}", config.getLetter(config.getCharacterIndex()+i))));
    
    Franck Dary's avatar
    Franck Dary committed
          else
            context.back().push_back(dict.getIndexOrInsert(Dict::nullValueStr));
      }
    
      for (auto index : contextIndexes)
        for (auto & col : columns)
          if (index == -1)
            for (auto & contextElement : context)
              contextElement.push_back(dict.getIndexOrInsert(Dict::nullValueStr));
          else
          {
            int dictIndex = dict.getIndexOrInsert(config.getAsFeature(col, index));
    
            for (auto & contextElement : context)
              contextElement.push_back(dictIndex);
    
            if (is_training())
              if (col == "FORM" || col == "LEMMA")
                if (dict.getNbOccs(dictIndex) <= unknownValueThreshold)
                {
                  context.emplace_back(context.back());
                  context.back().back() = dict.getIndexOrInsert(Dict::unknownValueStr);
                }
          }
    
      for (auto & contextElement : context)
        for (unsigned int colIndex = 0; colIndex < focusedColumns.size(); colIndex++)
        {
          auto & col = focusedColumns[colIndex];
    
          std::vector<int> focusedIndexes;
          for (auto relIndex : focusedBufferIndexes)
          {
            int index = relIndex + leftBorder;
            if (index < 0 || index >= (int)contextIndexes.size())
              focusedIndexes.push_back(-1);
            else
              focusedIndexes.push_back(contextIndexes[index]);
          }
          for (auto index : focusedStackIndexes)
          {
            if (!config.hasStack(index))
              focusedIndexes.push_back(-1);
            else if (!config.has(col, config.getStack(index), 0))
              focusedIndexes.push_back(-1);
            else
              focusedIndexes.push_back(config.getStack(index));
          }
    
          for (auto index : focusedIndexes)
          {
            if (index == -1)
            {
              for (int i = 0; i < maxNbElements[colIndex]; i++)
                contextElement.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr));
              continue;
            }
    
            std::vector<std::string> elements;
            if (col == "FORM")
            {
              auto asUtf8 = util::splitAsUtf8(config.getAsFeature(col, index).get());
    
              for (int i = 0; i < maxNbElements[colIndex]; i++)
                if (i < (int)asUtf8.size())
    
                  elements.emplace_back(fmt::format("{}", asUtf8[i]));
    
    Franck Dary's avatar
    Franck Dary committed
                else
                  elements.emplace_back(Dict::nullValueStr);
            }
            else if (col == "FEATS")
            {
              auto splited = util::split(config.getAsFeature(col, index).get(), '|');
    
              for (int i = 0; i < maxNbElements[colIndex]; i++)
                if (i < (int)splited.size())
                  elements.emplace_back(fmt::format("FEATS({})", splited[i]));
                else
                  elements.emplace_back(Dict::nullValueStr);
            }
            else if (col == "ID")
            {
              if (config.isTokenPredicted(index))
                elements.emplace_back("ID(TOKEN)");
              else if (config.isMultiwordPredicted(index))
                elements.emplace_back("ID(MULTIWORD)");
              else if (config.isEmptyNodePredicted(index))
                elements.emplace_back("ID(EMPTYNODE)");
            }
            else
            {
              elements.emplace_back(config.getAsFeature(col, index));
            }
    
            if ((int)elements.size() != maxNbElements[colIndex])
              util::myThrow(fmt::format("elements.size ({}) != maxNbElements[colIndex ({},{})]", elements.size(), maxNbElements[colIndex], col));
    
            for (auto & element : elements)
              contextElement.emplace_back(dict.getIndexOrInsert(element));
          }
        }
    
      if (!is_training() && context.size() > 1)
        util::myThrow(fmt::format("Not in training mode, yet context yields multiple variants (size={})", context.size()));
    
      return context;
    }