Skip to content
Snippets Groups Projects
ContextModule.cpp 3.92 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "ContextModule.hpp"
    
    
    ContextModuleImpl::ContextModuleImpl(std::string name, const std::string & definition)
    
      setName(name);
    
      std::regex regex("(?:(?:\\s|\\t)*)Buffer\\{(.*)\\}(?:(?:\\s|\\t)*)Stack\\{(.*)\\}(?:(?:\\s|\\t)*)Columns\\{(.*)\\}(?:(?:\\s|\\t)*)(\\S+)\\{(.*)\\}(?:(?:\\s|\\t)*)In\\{(.*)\\}(?:(?:\\s|\\t)*)Out\\{(.*)\\}(?:(?:\\s|\\t)*)");
    
      if (!util::doIfNameMatch(regex, definition, [this,&definition](auto sm)
            {
              try
              {
    
                for (auto & index : util::split(sm.str(1), ' '))
    
                  bufferContext.emplace_back(std::stoi(index));
    
    
                for (auto & index : util::split(sm.str(2), ' '))
    
                  stackContext.emplace_back(std::stoi(index));
    
    
                auto funcColumns = util::split(sm.str(3), ' ');
                columns.clear();
                for (auto & funcCol : funcColumns)
                {
    
                  functions.emplace_back() = getFunction(funcCol);
                  columns.emplace_back(util::split(funcCol, ':').back());
    
                auto subModuleType = sm.str(4);
                auto subModuleArguments = util::split(sm.str(5), ' ');
    
    
                auto options = MyModule::ModuleOptions(true)
                  .bidirectional(std::stoi(subModuleArguments[0]))
                  .num_layers(std::stoi(subModuleArguments[1]))
                  .dropout(std::stof(subModuleArguments[2]))
                  .complete(std::stoi(subModuleArguments[3]));
    
    
                inSize = std::stoi(sm.str(6));
                int outSize = std::stoi(sm.str(7));
    
    
                if (subModuleType == "LSTM")
                  myModule = register_module("myModule", LSTM(columns.size()*inSize, outSize, options));
                else if (subModuleType == "GRU")
                  myModule = register_module("myModule", GRU(columns.size()*inSize, outSize, options));
    
    Franck Dary's avatar
    Franck Dary committed
                else if (subModuleType == "Concat")
                  myModule = register_module("myModule", Concat(inSize));
    
                else
                  util::myThrow(fmt::format("unknown sumodule type '{}'", subModuleType));
    
              } catch (std::exception & e) {util::myThrow(fmt::format("{} in '{}'",e.what(),definition));}
            }))
        util::myThrow(fmt::format("invalid definition '{}'", definition));
    }
    
    std::size_t ContextModuleImpl::getOutputSize()
    {
      return myModule->getOutputSize(bufferContext.size()+stackContext.size());
    }
    
    std::size_t ContextModuleImpl::getInputSize()
    {
      return columns.size()*(bufferContext.size()+stackContext.size());
    }
    
    
    void ContextModuleImpl::addToContext(std::vector<std::vector<long>> & context, const Config & config)
    
      auto & dict = getDict();
    
      std::vector<long> contextIndexes;
    
      for (int index : bufferContext)
        contextIndexes.emplace_back(config.getRelativeWordIndex(index));
    
      for (int index : stackContext)
        if (config.hasStack(index))
          contextIndexes.emplace_back(config.getStack(index));
        else
          contextIndexes.emplace_back(-1);
    
      for (auto index : contextIndexes)
    
        for (unsigned int colIndex = 0; colIndex < columns.size(); colIndex++)
        {
          auto & col = columns[colIndex];
    
          if (index == -1)
          {
            for (auto & contextElement : context)
              contextElement.push_back(dict.getIndexOrInsert(Dict::nullValueStr));
          }
          else
          {
    
            int dictIndex = dict.getIndexOrInsert(functions[colIndex](config.getAsFeature(col, index)));
    
    
            for (auto & contextElement : context)
              contextElement.push_back(dictIndex);
          }
    
    }
    
    torch::Tensor ContextModuleImpl::forward(torch::Tensor input)
    {
      auto context = wordEmbeddings(input.narrow(1, firstInputIndex, getInputSize()));
    
      context = context.view({context.size(0), context.size(1)/(int)columns.size(), (int)columns.size()*context.size(2)});
    
      return myModule->forward(context);
    }
    
    
    void ContextModuleImpl::registerEmbeddings(std::filesystem::path path)
    
      wordEmbeddings = register_module("embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(getDict().size(), inSize)));
    
      loadPretrainedW2vEmbeddings(wordEmbeddings, path);