Select Git revision
-
Emmanuel Bruno authoredEmmanuel Bruno authored
dataset.py 5.60 KiB
import logging
import os
import select
import sys
import h5py
import numpy as np
from scipy import sparse
from . import get_multiview_db as DB
def get_v(dataset, view_index, used_indices=None):
"""Used to extract a view as a numpy array or a sparse mat from the HDF5 dataset"""
if used_indices is None:
used_indices = range(dataset.get("Metadata").attrs["datasetLength"])
if type(used_indices) is int:
return dataset.get("View" + str(view_index))[used_indices, :]
else:
used_indices = np.array(used_indices)
sorted_indices = np.argsort(used_indices)
used_indices = used_indices[sorted_indices]
if not dataset.get("View" + str(view_index)).attrs["sparse"]:
return dataset.get("View" + str(view_index))[used_indices, :][
np.argsort(sorted_indices), :]
else:
sparse_mat = sparse.csr_matrix(
(dataset.get("View" + str(view_index)).get("data").value,
dataset.get("View" + str(view_index)).get("indices").value,
dataset.get("View" + str(view_index)).get("indptr").value),
shape=dataset.get("View" + str(view_index)).attrs["shape"])[
used_indices, :][
np.argsort(sorted_indices), :]
return sparse_mat
def get_shape(dataset, view_index):
"""Used to get the dataset shape even if it's sparse"""
if not dataset.get("View" + str(view_index)).attrs["sparse"]:
return dataset.get("View" + str(view_index)).shape
else:
return dataset.get("View" + str(view_index)).attrs["shape"]
def get_value(dataset):
"""Used to get the value of a view in the HDF5 dataset even if it sparse"""
if not dataset.attrs["sparse"]:
return dataset.value
else:
sparse_mat = sparse.csr_matrix((dataset.get("data").value,
dataset.get("indices").value,
dataset.get("indptr").value),
shape=dataset.attrs["shape"])
return sparse_mat
def extract_subset(matrix, used_indices):
"""Used to extract a subset of a matrix even if it's sparse"""
if sparse.issparse(matrix):
new_indptr = np.zeros(len(used_indices) + 1, dtype=int)
oldindptr = matrix.indptr
for exampleIndexIndex, exampleIndex in enumerate(used_indices):
new_indptr[exampleIndexIndex + 1] = new_indptr[exampleIndexIndex] + (
oldindptr[exampleIndex + 1] - oldindptr[exampleIndex])
new_data = np.ones(new_indptr[-1], dtype=bool)
new_indices = np.zeros(new_indptr[-1], dtype=int)
old_indices = matrix.indices
for exampleIndexIndex, exampleIndex in enumerate(used_indices):
new_indices[new_indptr[exampleIndexIndex]:new_indptr[
exampleIndexIndex + 1]] = old_indices[
oldindptr[exampleIndex]:
oldindptr[exampleIndex + 1]]
return sparse.csr_matrix((new_data, new_indices, new_indptr),
shape=(len(used_indices), matrix.shape[1]))
else:
return matrix[used_indices]
def init_multiple_datasets(path_f, name, nb_cores):
r"""Used to create copies of the dataset if multicore computation is used.
This is a temporary solution to fix the sharing memory issue with HDF5 datasets.
Parameters
----------
path_f : string
Path to the original dataset directory
name : string
Name of the dataset
nb_cores : int
The number of threads that the benchmark can use
Returns
-------
datasetFiles : None
Dictionary resuming which mono- and multiview algorithms which will be used in the benchmark.
"""
if nb_cores > 1:
if DB.datasetsAlreadyExist(path_f, name, nb_cores):
logging.debug(
"Info:\t Enough copies of the dataset are already available")
pass
else:
logging.debug("Start:\t Creating " + str(
nb_cores) + " temporary datasets for multiprocessing")
logging.warning(
" WARNING : /!\ This may use a lot of HDD storage space : " +
str(os.path.getsize(path_f + name + ".hdf5") * nb_cores / float(
1024) / 1000 / 1000) + " Gbytes /!\ ")
confirmation = confirm()
if not confirmation:
sys.exit(0)
else:
dataset_files = DB.copyHDF5(path_f, name, nb_cores)
logging.debug("Start:\t Creating datasets for multiprocessing")
return dataset_files
def confirm(resp=True, timeout=15):
"""Used to process answer"""
ans = input_(timeout)
if not ans:
return resp
if ans not in ['y', 'Y', 'n', 'N']:
print('please enter y or n.')
if ans == 'y' or ans == 'Y':
return True
if ans == 'n' or ans == 'N':
return False
def input_(timeout=15):
"""used as a UI to stop if too much HDD space will be used"""
logging.warning("You have " + str(
timeout) + " seconds to stop the dataset copy by typing n")
i, o, e = select.select([sys.stdin], [], [], timeout)
if i:
return sys.stdin.readline().strip()
else:
return "y"
def get_monoview_shared(path, name, view_name, labels_names, classification_indices):
"""ATM is not used with shared memory, but soon :)"""
hdf5_dataset_file = h5py.File(path + name + ".hdf5", "w")
X = hdf5_dataset_file.get(view_name).value
y = hdf5_dataset_file.get("Labels").value
return X, y