Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
O
overview-DF
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
DOLPHINFREE experiments
overview-DF
Commits
d19a6ecb
Commit
d19a6ecb
authored
2 years ago
by
Loic-Lenof
Browse files
Options
Downloads
Patches
Plain Diff
Adding plots
+ adding plots by date
parent
6d3d6b1c
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
Stats/.Rhistory
+120
-120
120 additions, 120 deletions
Stats/.Rhistory
Stats/BBP-click-whistles_3models.R
+41
-4
41 additions, 4 deletions
Stats/BBP-click-whistles_3models.R
with
161 additions
and
124 deletions
Stats/.Rhistory
+
120
−
120
View file @
d19a6ecb
sep
=
','
,
header
=
TRUE
)[
1
:
396
,]
id2021
<-
read.table
(
file
=
paste0
(
folder
,
'CSV_data/Audio_Data_2021.csv'
),
sep
=
','
,
header
=
TRUE
)[
1
:
96
,]
id2021
$
ID
<-
id2021
$
ID
+
max
(
id2020
$
ID
)
id2021
$
Seq
<-
id2021
$
Seq
+
max
(
id2020
$
Seq
)
id.dta
<-
rbind
(
id2020
,
id2021
)
id.dta
$
Fichier.Audio
<-
str_sub
(
id.dta
$
Fichier.Audio
,
-27
,
-5
)
acoustic.dta
$
ID
<-
rep
(
-1
,
490
)
for
(
name
in
acoustic.dta
$
audio_names
){
acoustic.dta
$
ID
[
match
(
name
,
acoustic.dta
$
audio_names
)]
<-
id.dta
$
ID
[
match
(
name
,
id.dta
$
Fichier.Audio
)]
}
acoustic.dta
$
ID
<-
as.factor
(
acoustic.dta
$
ID
)
rm
(
id2020
,
id2021
,
id.dta
)
# suppress "T" acoustic data (other groups not tested on our variables)
acoustic.dta
<-
acoustic.dta
[
acoustic.dta
$
acoustic
!=
"T"
,]
# shuffle dataframe
acoustic.dta
<-
acoustic.dta
[
sample
(
1
:
nrow
(
acoustic.dta
)),
]
acoustic.dta
$
acoustic
<-
factor
(
acoustic.dta
$
acoustic
)
#################### DATA INSPECTION #################################
# Data description
names
(
acoustic.dta
)
# self explenatory except acoustic : correspond to the activation sequence.
# Look for obvious correlations
plot
(
acoustic.dta
)
# nothing that we can see
# Look for zero-inflation
100
*
sum
(
acoustic.dta
$
number_of_clicks
==
0
)
/
nrow
(
acoustic.dta
)
100
*
sum
(
acoustic.dta
$
number_of_bbp
==
0
)
/
nrow
(
acoustic.dta
)
100
*
sum
(
acoustic.dta
$
total_whistles_duration
==
0
)
/
nrow
(
acoustic.dta
)
# 5.8%, 53.7% & 27.1% of our data are zeros. Will have to be dealt with.
# QUESTION: This study is aimed at understanding if dolphin's acoustic activity
# is influenced by their behavior, the emission of a pinger or a fishing net.
# Dependent variables (Y): number_of_clicks, number_of_bbp, total_whistles_duration.
# Explanatory variables (X): acoustic, fishing_net, behavior, beacon, net, number.
# What are the H0/ H1 hypotheses ?
# H0 : No influence of any of the explanatory variables on a dependant one.
# H1 : Influence of an explanatory variable on a dependent one.
##################### DATA EXPLORATION ################################
# Y Outlier detection
par
(
mfrow
=
c
(
2
,
3
))
boxplot
(
acoustic.dta
$
total_whistles_duration
,
col
=
'red'
,
ylab
=
'total_whistles_duration'
)
boxplot
(
acoustic.dta
$
number_of_bbp
,
col
=
'red'
,
ylab
=
'number_of_bbp'
)
boxplot
(
acoustic.dta
$
number_of_clicks
,
col
=
'red'
,
ylab
=
'number_of_clicks'
)
dotchart
(
acoustic.dta
$
total_whistles_duration
,
pch
=
16
,
xlab
=
'total_whistles_duration'
,
col
=
'red'
)
dotchart
(
acoustic.dta
$
number_of_bbp
,
pch
=
16
,
xlab
=
'number_of_bbp'
,
col
=
'red'
)
dotchart
(
acoustic.dta
$
number_of_clicks
,
pch
=
16
,
xlab
=
'number_of_clicks'
,
col
=
'red'
)
# Y distribution
par
(
mfrow
=
c
(
2
,
3
))
hist
(
acoustic.dta
$
total_whistles_duration
,
col
=
'red'
,
breaks
=
8
,
xlab
=
'total_whistles_duration'
,
ylab
=
'number'
)
hist
(
acoustic.dta
$
number_of_bbp
,
col
=
'red'
,
breaks
=
8
,
xlab
=
'number_of_bbp'
,
ylab
=
'number'
)
hist
(
acoustic.dta
$
number_of_clicks
,
col
=
'red'
,
breaks
=
8
,
xlab
=
'number_of_clicks'
,
ylab
=
'number'
)
qqnorm
(
acoustic.dta
$
total_whistles_duration
,
col
=
'red'
,
pch
=
16
)
qqline
(
acoustic.dta
$
total_whistles_duration
)
qqnorm
(
acoustic.dta
$
number_of_bbp
,
col
=
'red'
,
pch
=
16
)
qqline
(
acoustic.dta
$
number_of_bbp
)
qqnorm
(
acoustic.dta
$
number_of_clicks
,
col
=
'red'
,
pch
=
16
)
qqline
(
acoustic.dta
$
number_of_clicks
)
shapiro.test
(
acoustic.dta
$
total_whistles_duration
)
shapiro.test
(
acoustic.dta
$
number_of_bbp
)
shapiro.test
(
acoustic.dta
$
number_of_clicks
)
# p-values are significant => they do not follow normal distributions
# will need a transformation or the use of a glim model
# X Number of individuals per level
summary
(
factor
(
acoustic.dta
$
acoustic
))
summary
(
factor
(
acoustic.dta
$
fishing_net
))
summary
(
factor
(
acoustic.dta
$
behavior
))
summary
(
factor
(
acoustic.dta
$
beacon
))
summary
(
factor
(
acoustic.dta
$
net
))
table
(
factor
(
acoustic.dta
$
acoustic
),
factor
(
acoustic.dta
$
fishing_net
))
table
(
factor
(
acoustic.dta
$
acoustic
),
factor
(
acoustic.dta
$
behavior
))
table
(
factor
(
acoustic.dta
$
behavior
),
factor
(
acoustic.dta
$
acoustic
))
ftable
(
factor
(
acoustic.dta
$
fishing_net
),
factor
(
acoustic.dta
$
behavior
),
factor
(
acoustic.dta
$
acoustic
))
...
...
@@ -193,7 +116,7 @@ letter = trimws(table$.group))
barPlot
(
computeStats
(
acoustic.dta
,
fishing_net
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
fishing_net
,
old_names
=
c
(
"SSF"
,
"F"
),
new_names
=
c
(
"Absent"
,
"Present"
),
xname
=
"Presence/Asence of fishing net"
,
height
=
.5
,
xname
=
"Presence/Asence of fishing net"
,
height
=
1
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
)
# BBP
table
<-
cld
(
emmeans
(
mod.bbp
,
pairwise
~
fishing_net
,
adjust
=
"tukey"
),
Letters
=
letters
)
...
...
@@ -218,7 +141,7 @@ ytitle="Mean number of clicks per dolphin per min")
table
<-
cld
(
emmeans
(
mod.whi
,
pairwise
~
acoustic
,
adjust
=
"tukey"
),
Letters
=
letters
)
myletters_df
<-
data.frame
(
acoustic
=
table
$
acoustic
,
letter
=
trimws
(
table
$
.group
))
barPlot
(
computeStats
(
acoustic.dta
,
acoustic
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
acoustic
,
height
=
0.65
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
myletters_df
,
acoustic
,
height
=
1.3
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
old_names
=
c
(
"AV"
,
"AV+D"
,
"D"
,
"D+AP"
,
"AP"
),
new_names
=
c
(
"BEF"
,
"BEF+DUR"
,
"DUR"
,
"DUR+AFT"
,
"AFT"
),
xname
=
"Activation sequence"
)
...
...
@@ -286,7 +209,7 @@ legend_title="Fishing net", legend_labs=c("Present", "Absent"))
table
<-
cld
(
emmeans
(
mod.whi
,
pairwise
~
behavior
,
adjust
=
"tukey"
),
Letters
=
letters
)
myletters_df
<-
data.frame
(
behavior
=
table
$
behavior
,
letter
=
trimws
(
table
$
.group
))
barPlot
(
computeStats
(
acoustic.dta
,
behavior
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
behavior
,
height
=
0.7
5
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
myletters_df
,
behavior
,
height
=
1.
5
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
old_names
=
c
(
"CHAS"
,
"DEPL"
,
"SOCI"
),
new_names
=
c
(
"Foraging"
,
"Travelling"
,
"Socialising"
),
xname
=
"Behaviours of dolphins"
)
...
...
@@ -436,7 +359,7 @@ numb_stats_w[is.na(numb_stats_w)] <- 0
numb_stats_w
$
ID
<-
as.factor
(
numb_stats_w
$
ID
)
numb_stats_w
%>%
ggplot
(
aes
(
x
=
ID
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
sd
),
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"red"
,
width
=
.1
,
show.legend
=
FALSE
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_light
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
...
...
@@ -448,7 +371,7 @@ numb_stats_b[is.na(numb_stats_b)] <- 0
numb_stats_b
$
ID
<-
as.factor
(
numb_stats_b
$
ID
)
numb_stats_b
%>%
ggplot
(
aes
(
x
=
ID
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
sd
),
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"red"
,
width
=
.1
,
show.legend
=
FALSE
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_light
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
...
...
@@ -460,7 +383,7 @@ numb_stats_c[is.na(numb_stats_c)] <- 0
numb_stats_c
$
ID
<-
as.factor
(
numb_stats_c
$
ID
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
ID
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
sd
),
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"red"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_light
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
...
...
@@ -472,41 +395,118 @@ data_test <- acoustic.dta[acoustic.dta$ID!="2",]
print
(
posthocKW
(
data_test
$
whistling_time_per_dolphin
,
data_test
$
ID
))
print
(
posthocKW
(
data_test
$
BBPs_per_dolphin
,
data_test
$
ID
))
print
(
posthocKW
(
data_test
$
clicks_per_dolphin
,
data_test
$
ID
))
#### Fishing net ####
# whistles
table
<-
cld
(
emmeans
(
mod.whi
,
pairwise
~
fishing_net
,
adjust
=
"tukey"
),
Letters
=
letters
)
myletters_df
<-
data.frame
(
fishing_net
=
table
$
fishing_net
,
letter
=
trimws
(
table
$
.group
))
barPlot
(
computeStats
(
acoustic.dta
,
fishing_net
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
fishing_net
,
old_names
=
c
(
"SSF"
,
"F"
),
new_names
=
c
(
"Absent"
,
"Present"
),
xname
=
"Presence/Asence of fishing net"
,
height
=
1
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
)
#### Acoustic plots ####
# Whistles
table
<-
cld
(
emmeans
(
mod.whi
,
pairwise
~
acoustic
,
adjust
=
"tukey"
),
Letters
=
letters
)
myletters_df
<-
data.frame
(
acoustic
=
table
$
acoustic
,
letter
=
trimws
(
table
$
.group
))
barPlot
(
computeStats
(
acoustic.dta
,
acoustic
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
acoustic
,
height
=
1.2
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
old_names
=
c
(
"AV"
,
"AV+D"
,
"D"
,
"D+AP"
,
"AP"
),
new_names
=
c
(
"BEF"
,
"BEF+DUR"
,
"DUR"
,
"DUR+AFT"
,
"AFT"
),
xname
=
"Activation sequence"
)
barPlot
(
computeStats
(
acoustic.dta
,
acoustic
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
acoustic
,
height
=
1.3
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
old_names
=
c
(
"AV"
,
"AV+D"
,
"D"
,
"D+AP"
,
"AP"
),
new_names
=
c
(
"BEF"
,
"BEF+DUR"
,
"DUR"
,
"DUR+AFT"
,
"AFT"
),
xname
=
"Activation sequence"
)
#### Behaviour plots ####
#### Plots by days ####
# clicks
numb_stats_c
<-
computeStats
(
acoustic.dta
,
date
,
clicks_per_dolphin
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
date
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
date
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"black"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_classic
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
ylab
(
"Mean number of clicks per dolphin per min"
)
+
xlab
(
"Days of recording"
)
# BBPs
numb_stats_c
<-
computeStats
(
acoustic.dta
,
date
,
BBPs_per_dolphin
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
date
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
date
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"black"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_classic
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
ylab
(
"Number of BBPs per dolphin per min"
)
+
xlab
(
"Days of recording"
)
# Whistles
table
<-
cld
(
emmeans
(
mod.whi
,
pairwise
~
behavior
,
adjust
=
"tukey"
),
Letters
=
letters
)
myletters_df
<-
data.frame
(
behavior
=
table
$
behavior
,
letter
=
trimws
(
table
$
.group
))
barPlot
(
computeStats
(
acoustic.dta
,
behavior
,
whistling_time_per_dolphin
/
n_bins
),
myletters_df
,
behavior
,
height
=
1.5
,
ytitle
=
"Mean whistling time per dolphin per min (in sec)"
,
old_names
=
c
(
"CHAS"
,
"DEPL"
,
"SOCI"
),
new_names
=
c
(
"Foraging"
,
"Travelling"
,
"Socialising"
),
xname
=
"Behaviours of dolphins"
)
25.8
/
19.1
5.65
/
(
25.8
/
19.1
)
25.15
/
20.9
5.65
/
(
25.15
/
20.9
)
5.65
/
(
25.8
/
23.4
)
numb_stats_c
<-
computeStats
(
acoustic.dta
,
date
,
whistling_time_per_dolphin
/
n_bins
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
date
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
date
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"black"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_classic
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
ylab
(
"Mean whistling time per dolphin per min (in sec)"
)
+
xlab
(
"Days of recording"
)
View
(
acoustic.dta
)
sum
(
acoustic.dta
$
date
==
"09/07/2021"
)
56
/
361
########################################################################
# STATISTICS
# Author : Loic LEHNHOFF
# Adapted from Yannick OUTREMAN
# Agrocampus Ouest - 2020
#######################################################################
library
(
pscl
)
library
(
MASS
)
library
(
lmtest
)
library
(
multcomp
)
library
(
emmeans
)
library
(
dplyr
)
# "%>%" function
library
(
forcats
)
# "fct_relevel" function
library
(
stringr
)
# "gsub" function
library
(
rcompanion
)
# "fullPTable" function
library
(
multcompView
)
# "multcompLetters" function
library
(
ggplot2
)
library
(
pgirmess
)
library
(
postHoc
)
#library(tidyquant) # geom_ma() if rolling average needed
n_bins
=
187.5
# number of bins per sec for spectrograms (whistles)
################# DATASET IMPORTS #####################################
folder
<-
'./../'
whistles.dta
<-
read.table
(
file
=
paste0
(
folder
,
'Whistles/Evaluation/whistles_durations.csv'
),
sep
=
','
,
header
=
TRUE
)
whistles.dta
<-
whistles.dta
[
order
(
whistles.dta
$
audio_names
),]
bbp.dta
<-
read.table
(
file
=
paste0
(
folder
,
'BBPs/Results/16-06-22_14h00_number_of_BBP.csv'
),
sep
=
','
,
header
=
TRUE
)
bbp.dta
<-
bbp.dta
[
order
(
bbp.dta
$
audio_names
),]
clicks.dta
<-
read.table
(
file
=
paste0
(
folder
,
'Clicks/Results/projection_updated_number_of_clicks_02052022.csv'
),
#number_of_clicks_02052022.csv
sep
=
','
,
header
=
TRUE
)
clicks.dta
<-
clicks.dta
[
order
(
clicks.dta
$
audio_names
),]
# Merge files into 1 dataset
acoustic.dta
<-
clicks.dta
acoustic.dta
$
number_of_bbp
<-
bbp.dta
$
number_of_BBP
acoustic.dta
$
total_whistles_duration
<-
whistles.dta
$
total_whistles_duration
rm
(
whistles.dta
,
bbp.dta
,
clicks.dta
)
# add group IDs
id2020
<-
read.table
(
file
=
paste0
(
folder
,
'CSV_data/Audio_Data_2020.csv'
),
sep
=
','
,
header
=
TRUE
)[
1
:
396
,]
id2021
<-
read.table
(
file
=
paste0
(
folder
,
'CSV_data/Audio_Data_2021.csv'
),
sep
=
','
,
header
=
TRUE
)[
1
:
96
,]
id2021
$
ID
<-
id2021
$
ID
+
max
(
id2020
$
ID
)
id2021
$
Seq
<-
id2021
$
Seq
+
max
(
id2020
$
Seq
)
id.dta
<-
rbind
(
id2020
,
id2021
)
id.dta
$
Fichier.Audio
<-
str_sub
(
id.dta
$
Fichier.Audio
,
-27
,
-5
)
acoustic.dta
$
ID
<-
rep
(
-1
,
490
)
for
(
name
in
acoustic.dta
$
audio_names
){
acoustic.dta
$
ID
[
match
(
name
,
acoustic.dta
$
audio_names
)]
<-
id.dta
$
ID
[
match
(
name
,
id.dta
$
Fichier.Audio
)]
}
acoustic.dta
$
ID
<-
as.factor
(
acoustic.dta
$
ID
)
rm
(
id2020
,
id2021
,
id.dta
)
# suppress "T" acoustic data (other groups not tested on our variables)
acoustic.dta
<-
acoustic.dta
[
acoustic.dta
$
acoustic
!=
"T"
,]
# shuffle dataframe
acoustic.dta
<-
acoustic.dta
[
sample
(
1
:
nrow
(
acoustic.dta
)),
]
acoustic.dta
$
acoustic
<-
factor
(
acoustic.dta
$
acoustic
)
#################### DATA INSPECTION #################################
# Data description
names
(
acoustic.dta
)
# self explenatory except acoustic : correspond to the activation sequence.
# Look for obvious correlations
plot
(
acoustic.dta
)
# nothing that we can see
# Look for zero-inflation
100
*
sum
(
acoustic.dta
$
number_of_clicks
==
0
)
/
nrow
(
acoustic.dta
)
100
*
sum
(
acoustic.dta
$
number_of_bbp
==
0
)
/
nrow
(
acoustic.dta
)
100
*
sum
(
acoustic.dta
$
total_whistles_duration
==
0
)
/
nrow
(
acoustic.dta
)
# 5.8%, 53.7% & 27.1% of our data are zeros. Will have to be dealt with.
# QUESTION: This study is aimed at understanding if dolphin's acoustic activity
# is influenced by their behavior, the emission of a pinger or a fishing net.
# Dependent variables (Y): number_of_clicks, number_of_bbp, total_whistles_duration.
# Explanatory variables (X): acoustic, fishing_net, behavior, beacon, net, number.
# What are the H0/ H1 hypotheses ?
# H0 : No influence of any of the explanatory variables on a dependant one.
# H1 : Influence of an explanatory variable on a dependent one.
View
(
acoustic.dta
)
sum
(
acoustic.dta
$
date
==
"09/07/2021"
)
sum
(
acoustic.dta
$
acoustic
==
"T"
)
This diff is collapsed.
Click to expand it.
Stats/BBP-click-whistles_3models.R
+
41
−
4
View file @
d19a6ecb
...
...
@@ -544,7 +544,7 @@ numb_stats_w[is.na(numb_stats_w)] <- 0
numb_stats_w
$
ID
<-
as.factor
(
numb_stats_w
$
ID
)
numb_stats_w
%>%
ggplot
(
aes
(
x
=
ID
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
sd
),
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"red"
,
width
=
.1
,
show.legend
=
FALSE
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_light
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
...
...
@@ -558,7 +558,7 @@ numb_stats_b$ID <- as.factor(numb_stats_b$ID)
numb_stats_b
%>%
ggplot
(
aes
(
x
=
ID
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
sd
),
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"red"
,
width
=
.1
,
show.legend
=
FALSE
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_light
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
...
...
@@ -572,7 +572,7 @@ numb_stats_c$ID <- as.factor(numb_stats_c$ID)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
ID
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
sd
),
geom_errorbar
(
aes
(
x
=
ID
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"red"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_light
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
...
...
@@ -585,3 +585,40 @@ data_test <- acoustic.dta[acoustic.dta$ID!="2",]
print
(
posthocKW
(
data_test
$
whistling_time_per_dolphin
,
data_test
$
ID
))
print
(
posthocKW
(
data_test
$
BBPs_per_dolphin
,
data_test
$
ID
))
print
(
posthocKW
(
data_test
$
clicks_per_dolphin
,
data_test
$
ID
))
#### Plots by days ####
# clicks
numb_stats_c
<-
computeStats
(
acoustic.dta
,
date
,
clicks_per_dolphin
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
date
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
date
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"black"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_classic
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
ylab
(
"Mean number of clicks per dolphin per min"
)
+
xlab
(
"Days of recording"
)
# BBPs
numb_stats_c
<-
computeStats
(
acoustic.dta
,
date
,
BBPs_per_dolphin
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
date
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
date
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"black"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_classic
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
ylab
(
"Number of BBPs per dolphin per min"
)
+
xlab
(
"Days of recording"
)
# Whistles
numb_stats_c
<-
computeStats
(
acoustic.dta
,
date
,
whistling_time_per_dolphin
/
n_bins
)
numb_stats_c
%>%
ggplot
(
aes
(
x
=
date
,
y
=
mean
,
group
=
1
))
+
geom_errorbar
(
aes
(
x
=
date
,
ymin
=
mean
-
sd
,
ymax
=
mean
+
ci
),
color
=
"black"
,
width
=
.1
)
+
geom_point
()
+
scale_x_discrete
(
guide
=
guide_axis
(
n.dodge
=
2
))
+
theme_classic
()
+
theme
(
text
=
element_text
(
size
=
12
))
+
ylab
(
"Mean whistling time per dolphin per min (in sec)"
)
+
xlab
(
"Days of recording"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment