Skip to content
Snippets Groups Projects
Select Git revision
  • 640cb428dca7522bcdf6b1e64d6a112deaaf1e74
  • main default protected
2 results

BBP-click-whistles_3models.R

Blame
  • BBP-click-whistles_3models.R 26.25 KiB
    ########################################################################
    #    STATISTICS
    #    Author : Loic LEHNHOFF
    #    Adapted from Yannick OUTREMAN 
    #    Agrocampus Ouest - 2020
    #######################################################################
    library(pscl)
    library(MASS)
    library(lmtest)
    library(multcomp)
    library(emmeans)
    library(dplyr)        # "%>%" function
    library(forcats)      # "fct_relevel" function
    library(stringr)      # "gsub" function 
    library(rcompanion)   # "fullPTable" function
    library(multcompView) # "multcompLetters" function
    library(ggplot2)
    library(pgirmess)
    library(postHoc)
    #library(tidyquant)    # geom_ma() if rolling average needed
    
    
    ################# DATASET IMPORTS #####################################
    folder <- './../'
    whistles.dta <-read.table(file=paste0(folder, 
                  'Whistles/Evaluation/whistles_durations.csv'),
                  sep = ',', header=TRUE)
    whistles.dta <- whistles.dta[order(whistles.dta$audio_names),]
    bbp.dta <-read.table(file=paste0(folder, 
                  'BBPs/Results/16-06-22_14h00_number_of_BBP.csv'),
                  sep = ',', header=TRUE)
    bbp.dta <- bbp.dta[order(bbp.dta$audio_names),]
    clicks.dta <-read.table(file=paste0(folder,
                  'Clicks/Results/projection_updated_number_of_clicks_02052022.csv'), #number_of_clicks_02052022.csv
                  sep = ',', header=TRUE)
    clicks.dta <- clicks.dta[order(clicks.dta$audio_names),]
    
    # Merge files into 1 dataset
    acoustic.dta <- clicks.dta
    acoustic.dta$number_of_bbp <- bbp.dta$number_of_BBP
    acoustic.dta$total_whistles_duration <- whistles.dta$total_whistles_duration
    rm(whistles.dta, bbp.dta, clicks.dta)
    
    # add group IDs
    id2020 <- read.table(file=paste0(folder, 'CSV_data/Audio_Data_2020.csv'),
                         sep = ',', header=TRUE)[1:396,]
    id2021 <- read.table(file=paste0(folder, 'CSV_data/Audio_Data_2021.csv'),
                         sep = ',', header=TRUE)[1:96,]
    id2021$ID <- id2021$ID+max(id2020$ID)
    id2021$Seq <- id2021$Seq+max(id2020$Seq)
    id.dta <- rbind(id2020, id2021)
    id.dta$Fichier.Audio <-str_sub(id.dta$Fichier.Audio, -27, -5)
    acoustic.dta$ID <- rep(-1, 490)
    for (name in acoustic.dta$audio_names){
      acoustic.dta$ID[match(name, acoustic.dta$audio_names)] <- id.dta$ID[match(name, id.dta$Fichier.Audio)]
    }
    acoustic.dta$ID <- as.factor(acoustic.dta$ID)
    rm(id2020, id2021, id.dta)
    
    
    # suppress "T" acoustic data (other groups not tested on our variables)
    acoustic.dta <- acoustic.dta[acoustic.dta$acoustic!="T",]
    # shuffle dataframe
    acoustic.dta <- acoustic.dta[sample(1:nrow(acoustic.dta)), ]
    acoustic.dta$acoustic <- factor(acoustic.dta$acoustic)
    
    #################### DATA INSPECTION  #################################
    # Data description
    names(acoustic.dta)
    # self explenatory except acoustic : correspond to the activation sequence.