Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
scikit-multimodallearn
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dev
scikit-multimodallearn
Commits
e3e810cd
Commit
e3e810cd
authored
5 years ago
by
Dominique Benielli
Browse files
Options
Downloads
Patches
Plain Diff
fix doc test bug
parent
c6616969
No related branches found
No related tags found
No related merge requests found
Pipeline
#3981
failed
5 years ago
Stage: test
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
multimodal/datasets/data_sample.py
+4
-1
4 additions, 1 deletion
multimodal/datasets/data_sample.py
multimodal/kernels/mkernel.py
+1
-1
1 addition, 1 deletion
multimodal/kernels/mkernel.py
multimodal/kernels/mvml.py
+6
-25
6 additions, 25 deletions
multimodal/kernels/mvml.py
with
11 additions
and
27 deletions
multimodal/datasets/data_sample.py
+
4
−
1
View file @
e3e810cd
...
...
@@ -361,7 +361,10 @@ class MultiModalArray(np.ndarray, MultiModalData):
try:
new_data = np.asarray(data)
if views_ind is None:
views_ind = np.array([0, new_data.shape[1]])
if new_data.shape[1] > 1:
views_ind = np.array([0, new_data.shape[1] // 2, new_data.shape[1]])
else:
views_ind = np.array([0, new_data.shape[1]])
except Exception as e:
raise ValueError(
'
Reshape
your
data
'
)
if new_data.ndim < 2 :
...
...
This diff is collapsed.
Click to expand it.
multimodal/kernels/mkernel.py
+
1
−
1
View file @
e3e810cd
...
...
@@ -85,7 +85,7 @@ class MKernel(metaclass=ABCMeta):
if
not
isinstance
(
X_
,
MultiModalArray
):
try
:
X_
=
np
.
asarray
(
X
)
X_
=
MultiModalArray
(
X_
)
X_
=
MultiModalArray
(
X_
,
views_ind
)
except
Exception
as
e
:
pass
# raise TypeError('Reshape your data')
...
...
This diff is collapsed.
Click to expand it.
multimodal/kernels/mvml.py
+
6
−
25
View file @
e3e810cd
...
...
@@ -104,36 +104,17 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin):
>>>
from
multimodal.kernels.mvml
import
MVML
>>>
from
sklearn.datasets
import
load_iris
>>>
X
,
y
=
load_iris
(
return_X_y
=
True
)
>>>
y
[
y
>
0
]
=
1
>>>
views_ind
=
[
0
,
2
,
4
]
# view 0: sepal data, view 1: petal data
>>>
clf
=
MVML
()
clf
.
get_params
()
>>>
clf
.
get_params
()
{
'
eta
'
:
1
,
'
kernel
'
:
'
linear
'
,
'
kernel_params
'
:
None
,
'
learn_A
'
:
1
,
'
learn_w
'
:
0
,
'
lmbda
'
:
0.1
,
'
n_loops
'
:
6
,
'
nystrom_param
'
:
1.0
,
'
precision
'
:
0.0001
}
>>>
clf
.
fit
(
X
,
y
,
views_ind
)
# doctest: +NORMALIZE_WHITESPACE
M
umboClassifier
(
base_estimator
=
None
,
best_view_mode
=
'
edge
'
,
n_estimators
=
50
,
random_state
=
0
)
M
VML
(
eta
=
1
,
kernel
=
'
linear
'
,
kernel_params
=
None
,
learn_A
=
1
,
learn_w
=
0
,
lmbda
=
0.1
,
n_loops
=
6
,
nystrom_param
=
1.0
,
precision
=
0.0001
)
>>>
print
(
clf
.
predict
([[
5.
,
3.
,
1.
,
1.
]]))
[
1
]
>>>
views_ind
=
[[
0
,
2
],
[
1
,
3
]]
# view 0: length data, view 1: width data
>>>
clf
=
MumboClassifier
(
random_state
=
0
)
>>>
clf
.
fit
(
X
,
y
,
views_ind
)
# doctest: +NORMALIZE_WHITESPACE
MumboClassifier
(
base_estimator
=
None
,
best_view_mode
=
'
edge
'
,
n_estimators
=
50
,
random_state
=
0
)
>>>
print
(
clf
.
predict
([[
5.
,
3.
,
1.
,
1.
]]))
[
1
]
0
>>>
from
sklearn.tree
import
DecisionTreeClassifier
>>>
base_estimator
=
DecisionTreeClassifier
(
max_depth
=
2
)
>>>
clf
=
MumboClassifier
(
base_estimator
=
base_estimator
,
random_state
=
0
)
>>>
clf
.
fit
(
X
,
y
,
views_ind
)
# doctest: +NORMALIZE_WHITESPACE
MumboClassifier
(
base_estimator
=
DecisionTreeClassifier
(
class_weight
=
None
,
criterion
=
'
gini
'
,
max_depth
=
2
,
max_features
=
None
,
max_leaf_nodes
=
None
,
min_impurity_decrease
=
0.0
,
min_impurity_split
=
None
,
min_samples_leaf
=
1
,
min_samples_split
=
2
,
min_weight_fraction_leaf
=
0.0
,
presort
=
False
,
random_state
=
None
,
splitter
=
'
best
'
),
best_view_mode
=
'
edge
'
,
n_estimators
=
50
,
random_state
=
0
)
>>>
print
(
clf
.
predict
([[
5.
,
3.
,
1.
,
1.
]]))
[
1
]
"""
# r_cond = 10-30
def
__init__
(
self
,
lmbda
=
0.1
,
eta
=
1
,
nystrom_param
=
1.0
,
kernel
=
"
linear
"
,
...
...
@@ -471,8 +452,8 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin):
return
pred
else
:
pred
=
np
.
sign
(
pred
)
pred
[
pred
==-
1
]
=
0
pred
=
pred
.
astype
(
int
)
pred
=
np
.
where
(
pred
==
-
1
,
0
,
pred
)
return
np
.
take
(
self
.
classes_
,
pred
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment