Skip to content
Snippets Groups Projects
Commit a453e239 authored by Dominique Benielli's avatar Dominique Benielli
Browse files

Update mumbo.py

parent f0ff1a72
No related branches found
No related tags found
No related merge requests found
Pipeline #11883 failed
......@@ -53,9 +53,7 @@ from sklearn.ensemble._forest import BaseForest
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import BaseDecisionTree
from sklearn.tree._tree import DTYPE ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=False
from sklearn.tree._tree import DTYPE
from sklearn.utils import check_array, check_X_y, check_random_state
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_is_fitted, has_fit_parameter
......@@ -68,9 +66,7 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
classifiers focus more on difficult cases.
A MuMBo classifier.
A MuMBo classifier is a meta-estimator that implements a multimodal ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=False
A MuMBo classifier is a meta-estimator that implements a multimodal
(or multi-view) boosting algorithm:
It fits a set of classifiers on the original dataset splitted into several
......@@ -83,9 +79,7 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
base_estimator : object, optional (default=DecisionTreeClassifier)
Base estimator from which the boosted ensemble is built.
Support for sample weighting is required, as well as proper `classes_`
and `n_classes_` attributes. The default is a DecisionTreeClassifie ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=Falser
and `n_classes_` attributes. The default is a DecisionTreeClassifie
with parameter ``max_depth=1``.
n_estimators : integer, optional (default=50)
......@@ -116,9 +110,7 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
n_classes\_ : int
Number of classes.
estimator_weights\_ : numpy.ndarray of floats, shape = (len(estimators\ ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=False_),)
estimator_weights\_ : numpy.ndarray of floats, shape = (len(estimators\
Weights for each estimator in the boosted ensemble.
estimator_errors_ : array of floats
......@@ -149,9 +141,7 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
>>> from sklearn.tree import DecisionTreeClassifier
>>> base_estimator = DecisionTreeClassifier(max_depth=2)
>>> clf = MumboClassifier(base_estimator=base_estimator, random_state=0)
>>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=False
>>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE
MumboClassifier(base_estimator=DecisionTreeClassifier(max_depth=2),
random_state=0)
>>> print(clf.predict([[ 5., 3., 1., 1.]]))
......@@ -167,9 +157,7 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
----------
.. [1] Sokol Koço,
"Tackling the uneven views problem with cooperation based ensemble
learning methods", ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=False
learning methods",
"""
def __init__(self,
......@@ -183,9 +171,7 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
self.n_estimators = n_estimators
self.estimator_params = [tuple() for _ in base_estimator]
else: ValueError: cannot resize an array that references or is referenced
951E by another array in this way.
952E Use the np.resize function or refcheck=False
else:
super(MumboClassifier, self).__init__(
base_estimator=base_estimator,
n_estimators=n_estimators)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment