Skip to content
Snippets Groups Projects
Commit 65e5c1a5 authored by Dominique Benielli's avatar Dominique Benielli
Browse files

testcumbo

parent 4f44aaa4
No related branches found
No related tags found
No related merge requests found
Pipeline #4447 passed
......@@ -489,24 +489,24 @@ class TestMuCumboClassifier(unittest.TestCase):
# assert_array_equal(clf.views_ind_, expected_views_ind)
# #
# def test_class_variation(self):
# # Check that classes labels can be integers or strings and can be stored
# # into any kind of sequence
# X = np.array([[1., 1., 1.], [-1., -1., -1.]])
# views_ind = np.array([0, 1, 3])
# y = np.array([3, 1])
# clf = MuCumboClassifier()
# clf.fit(X, y, views_ind)
# np.testing.assert_almost_equal(clf.predict(X), y)
#
# y = np.array(["class_1", "class_2"])
# clf = MuCumboClassifier()
# clf.fit(X, y)
# np.testing.assert_equal(clf.predict(X), y)
# # Check that misformed or inconsistent inputs raise expections
# X = np.zeros((5, 4, 2))
# y = np.array([0, 1])
# self.assertRaises(ValueError, clf.fit, X, y, views_ind)
def test_class_variation(self):
# Check that classes labels can be integers or strings and can be stored
# into any kind of sequence
X = np.array([[1., 1., 1.], [-1., -1., -1.]])
views_ind = np.array([0, 1, 3])
y = np.array([3, 1])
clf = MuCumboClassifier()
clf.fit(X, y, views_ind)
np.testing.assert_almost_equal(clf.predict(X), y)
y = np.array(["class_1", "class_2"])
clf = MuCumboClassifier()
clf.fit(X, y)
np.testing.assert_equal(clf.predict(X), y)
# Check that misformed or inconsistent inputs raise expections
X = np.zeros((5, 4, 2))
y = np.array([0, 1])
self.assertRaises(ValueError, clf.fit, X, y, views_ind)
# assert_raises(ValueError, clf.fit, X, y, views_ind)
......@@ -634,30 +634,30 @@ class TestMuCumboClassifier(unittest.TestCase):
# assert_array_equal(clf.predict(np.array([[-1., 0., 1.]])), np.array([1]))
# def test_simple_predict(self):
# #np.random.seed(seed)
#
# # Simple example with 2 classes and 1 view
# X = np.array(
# [[1.1, 2.1],
# [2.1, 0.2],
# [0.7, 1.2],
# [-0.9, -1.8],
# [-1.1, -2.2],
# [-0.3, -1.3]])
# y = np.array([0, 0, 0, 1, 1, 1])
# views_ind = np.array([0, 2])
# clf = MuCumboClassifier()
# clf.fit(X, y, views_ind)
# #assert_array_equal(clf.predict(X), y)
# #assert_array_equal(clf.predict(np.array([[1., 1.], [-1., -1.]])),
# # np.array([0, 1]))
# #assert_equal(clf.decision_function(X).shape, y.shape)
#
# views_ind = np.array([[1, 0]])
# clf = MuCumboClassifier()
# clf.fit(X, y, views_ind)
# np.testing.assert_almost_equal(clf.predict(X), y)
def test_simple_predict(self):
#np.random.seed(seed)
# Simple example with 2 classes and 1 view
X = np.array(
[[1.1, 2.1],
[2.1, 0.2],
[0.7, 1.2],
[-0.9, -1.8],
[-1.1, -2.2],
[-0.3, -1.3]])
y = np.array([0, 0, 0, 1, 1, 1])
views_ind = np.array([0, 2])
clf = MuCumboClassifier()
clf.fit(X, y, views_ind)
#assert_array_equal(clf.predict(X), y)
#assert_array_equal(clf.predict(np.array([[1., 1.], [-1., -1.]])),
# np.array([0, 1]))
#assert_equal(clf.decision_function(X).shape, y.shape)
views_ind = np.array([[1, 0]])
clf = MuCumboClassifier()
clf.fit(X, y, views_ind)
np.testing.assert_almost_equal(clf.predict(X), y)
......@@ -835,8 +835,8 @@ class TestMuCumboClassifier(unittest.TestCase):
# assert_equal(clf.score(X, y), 1.)
#
# def test_classifier(self):
# return check_estimator(MuCumboClassifier)
def test_classifier(self):
return check_estimator(MuCumboClassifier)
#
#
# def test_iris():
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment