Skip to content
Snippets Groups Projects
README.rst 4.11 KiB
Newer Older
  • Learn to ignore specific revisions
  • Dominique Benielli's avatar
    Dominique Benielli committed
    scikit-multimodallearn
    ======================
    
    **scikit-multimodallearn** is a Python package implementing algorithms multimodal data.
    
    It is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular
    package for machine learning in Python.
    
    
    Documentation
    -------------
    
    The **documentation** including installation instructions, API documentation
    and examples is
    `available online <http://dev.pages.lis-lab.fr/multimodal>`_.
    
    
    Installation
    ------------
    
    Dependencies
    ~~~~~~~~~~~~
    
    **scikit-multimodallearn** works with **Python 3.5 or later**.
    
    **scikit-multimodallearn** depends on **scikit-learn** (version >= 0.19).
    
    Optionally, **matplotlib** is required to run the examples.
    
    Installation using pip
    ~~~~~~~~~~~~~~~~~~~~~~
    
    **scikit-multimodallearn** is
    `available on PyPI <https://pypi.org/project/multiconfusion/>`_
    and can be installed using **pip**::
    
      pip install scikit-multimodallearn
    
    
    Development
    -----------
    
    The development of this package follows the guidelines provided by the
    scikit-learn community.
    
    Refer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_
    of the scikit-learn project for more details.
    
    Source code
    ~~~~~~~~~~~
    
    You can get the **source code** from the **Git** repository of the project::
    
      git clone git@gitlab.lis-lab.fr:dev/multiconfusion.git
    
    Testing
    ~~~~~~~
    
    **pytest** and **pytest-cov** are required to run the **test suite** with::
    
    
    Dominique Benielli's avatar
    Dominique Benielli committed
      cd multimodal
    
    Dominique Benielli's avatar
    Dominique Benielli committed
      pytest
    
    A code coverage report is displayed in the terminal when running the tests.
    An HTML version of the report is also stored in the directory **htmlcov**.
    
    
    Generating the documentation
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
    The generation of the documentation requires **sphinx**, **sphinx-gallery**,
    **numpydoc** and **matplotlib** and can be run with::
    
      python setup.py build_sphinx
    
    The resulting files are stored in the directory **build/sphinx/html**.
    
    
    Credits
    -------
    
    **scikit-multimodallearn** is developped by the
    `development team <https://developpement.lis-lab.fr/>`_ of the
    `LIS <http://www.lis-lab.fr/>`_.
    
    If you use **scikit-multimodallearn** in a scientific publication, please cite the
    following paper::
    
     @InProceedings{Koco:2011:BAMCC,
      author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
      editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
              and Vazirgiannis, Michalis},
      title={A Boosting Approach to Multiview Classification with Cooperation},
      booktitle={Proceedings of the 2011 European Conference on Machine Learning
                 and Knowledge Discovery in Databases - Volume Part II},
      year={2011},
      location={Athens, Greece},
      publisher={Springer-Verlag},
      address={Berlin, Heidelberg},
      pages={209--228},
      numpages = {20},
      isbn={978-3-642-23783-6}
      url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
      keywords={boosting, classification, multiview learning,
                supervised learning},
     }
    
    
    References
    ~~~~~~~~~~
    * Sokol Koço, Cécile Capponi,
      `"Learning from Imbalanced Datasets with cross-view cooperation"`
      Linking and mining heterogeneous an multi-view data, Unsupervised and
      semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer
    
    
    * Sokol Koço, Cécile Capponi,
      `"A boosting approach to multiview classification with cooperation"
      <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,
      Proceedings of the 2011 European Conference on Machine Learning (ECML),
      Athens, Greece, pp.209-228, 2011, Springer-Verlag.
    
    * Sokol Koço,
      `"Tackling the uneven views problem with cooperation based ensemble
      learning methods" <http://www.theses.fr/en/2013AIXM4101>`_,
      PhD Thesis, Aix-Marseille Université, 2013.
    
    * Riikka Huusari, Hachem Kadri and Cécile Capponi,
      "Multi-View Metric Learning in Vector-Valued Kernel Spaces"
      in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018
    
    Copyright
    ~~~~~~~~~
    
    Université d'Aix Marseille (AMU) -
    Centre National de la Recherche Scientifique (CNRS) -
    Université de Toulon (UTLN).
    
    Copyright © 2017-2018 AMU, CNRS, UTLN
    
    License
    ~~~~~~~
    
    
    Dominique Benielli's avatar
    Dominique Benielli committed
    **scikit-multimodallearn** is free software: you can redistribute it and/or modify
    it under the terms of the **New BSD License**