Skip to content
Snippets Groups Projects
Select Git revision
  • c35044ad49d86e1b592fc1e00f4c433c097df643
  • master default protected
2 results

oracle.py

Blame
  • ExecClassifMonoView.py 14.92 KiB
    #!/usr/bin/env python
    
    """ Execution: Script to perform a MonoView classification """
    
    # Import built-in modules
    import argparse                         # for command line arguments
    import datetime                         # for TimeStamp in CSVFile
    import os                               # to geth path of the running script
    import time                             # for time calculations
    import operator
    
    # Import 3rd party modules
    import numpy as np                      # for reading CSV-files and Series
    import logging                          # To create Log-Files
    from sklearn import metrics		        # For stastics on classification
    import h5py
    
    # Import own modules
    import MonoviewUtils	                # Functions for classification
    import ExportResults                    # Functions to render results
    import MonoviewClassifiers
    import Metrics
    from analyzeResult import execute
    from utils.Dataset import getV, getValue, extractSubset
    
    # Author-Info
    __author__ 	= "Nikolas Huelsmann, Baptiste BAUVIN"
    __status__ 	= "Prototype"           # Production, Development, Prototype
    __date__	= 2016-03-25
    
    
    def ExecMonoview_multicore(directory, name, labelsNames, learningRate, nbFolds, datasetFileIndex, databaseType, path, statsIter, randomState, hyperParamSearch="randomizedSearch",
                               metrics=[["accuracy_score", None]], nIter=30, **args):
        DATASET = h5py.File(path+name+str(datasetFileIndex)+".hdf5", "r")
        kwargs = args["args"]
        views = [DATASET.get("View"+str(viewIndex)).attrs["name"] for viewIndex in range(DATASET.get("Metadata").attrs["nbView"])]
        neededViewIndex = views.index(kwargs["feat"])
        X = DATASET.get("View"+str(neededViewIndex))
        Y = DATASET.get("Labels").value
        return ExecMonoview(directory, X, Y, name, labelsNames, learningRate, nbFolds, 1, databaseType, path, statsIter, randomState, hyperParamSearch=hyperParamSearch,
                            metrics=metrics, nIter=nIter, **args)
    
    
    def ExecMonoview(directory, X, Y, name, labelsNames, learningRate, nbFolds, nbCores, databaseType, path, statsIter, randomState, hyperParamSearch="randomizedSearch",
                     metrics=[["accuracy_score", None]], nIter=30, **args):
        logging.debug("Start:\t Loading data")
        try:
            kwargs = args["args"]
        except:
            kwargs = args
        t_start = time.time()
        feat = X.attrs["name"]
        CL_type = kwargs["CL_type"]
        nbClass = kwargs["nbClass"]
        X = getValue(X)
        datasetLength = X.shape[0]
    
        logging.debug("Done:\t Loading data")
        # Determine the Database to extract features
        logging.debug("Info:\t Classification - Database:" + str(name) + " Feature:" + str(feat) + " train_size:" + str(learningRate) + ", CrossValidation k-folds:" + str(nbFolds) + ", cores:" + str(nbCores)+", algorithm : "+CL_type)
    
        y_trains = []
        y_tests = []
        y_train_preds = []
        y_test_preds = []
        for iterationStat in range(statsIter):
            # Calculate Train/Test data
            logging.debug("Start:\t Determine Train/Test split"+" for iteration "+str(iterationStat+1))
            testIndices = MonoviewUtils.splitDataset(Y, nbClass, learningRate, datasetLength, randomState)
            trainIndices = [i for i in range(datasetLength) if i not in testIndices]
            X_train = extractSubset(X,trainIndices)
            X_test = extractSubset(X,testIndices)
            y_train = Y[trainIndices]
            y_test = Y[testIndices]
    
            logging.debug("Info:\t Shape X_train:" + str(X_train.shape) + ", Length of y_train:" + str(len(y_train)))
            logging.debug("Info:\t Shape X_test:" + str(X_test.shape) + ", Length of y_test:" + str(len(y_test)))
            logging.debug("Done:\t Determine Train/Test split")
    
            # Begin Classification RandomForest
    
            classifierModule = getattr(MonoviewClassifiers, CL_type)
    
            if hyperParamSearch != "None":
                classifierGridSearch = getattr(classifierModule, hyperParamSearch)
                logging.debug("Start:\t RandomSearch best settings with "+str(nIter)+" iterations for "+CL_type)
                cl_desc = classifierGridSearch(X_train, y_train, randomState, nbFolds=nbFolds, nbCores=nbCores,
                                               metric=metrics[0], nIter=nIter)
                clKWARGS = dict((str(index), desc) for index, desc in enumerate(cl_desc))
                logging.debug("Done:\t RandomSearch best settings")
            else:
                clKWARGS = kwargs[kwargs["CL_type"]+"KWARGS"]
            logging.debug("Start:\t Training")
            cl_res = classifierModule.fit(X_train, y_train, randomState, NB_CORES=nbCores, **clKWARGS)
            logging.debug("Done:\t Training")
    
            logging.debug("Start:\t Predicting")
            # Stats Result
            y_train_pred = cl_res.predict(X_train)
            y_test_pred = cl_res.predict(X_test)
    
            y_trains.append(y_train)
            y_train_preds.append(y_train_pred)
            y_tests.append(y_test)
            y_test_preds.append(y_test_pred)
            full_labels = cl_res.predict(X)
            logging.debug("Done:\t Predicting")
        t_end  = time.time() - t_start
        logging.debug("Info:\t Time for training and predicting: " + str(t_end) + "[s]")
    
        logging.debug("Start:\t Getting Results")
    
        stringAnalysis, imagesAnalysis, metricsScores = execute(name, learningRate, nbFolds, nbCores, hyperParamSearch, metrics, nIter, feat, CL_type,
                                                                clKWARGS, labelsNames, X.shape,
                                                                y_trains, y_train_preds, y_tests, y_test_preds, t_end, statsIter, randomState)
        cl_desc = [value for key, value in sorted(clKWARGS.iteritems())]
        logging.debug("Done:\t Getting Results")
        logging.info(stringAnalysis)
        labelsString = "-".join(labelsNames)
        timestr = time.strftime("%Y%m%d-%H%M%S")
        CL_type_string = CL_type
        outputFileName = directory + timestr + "Results-" + CL_type_string + "-" + labelsString + \
                         '-learnRate' + str(learningRate) + '-' + name + "-" + feat
    
        outputTextFile = open(outputFileName + '.txt', 'w')
        outputTextFile.write(stringAnalysis)
        outputTextFile.close()
    
        if imagesAnalysis is not None:
            for imageName in imagesAnalysis:
                if os.path.isfile(outputFileName + imageName + ".png"):
                    for i in range(1,20):
                        testFileName = outputFileName + imageName + "-" + str(i) + ".png"
                        if os.path.isfile(testFileName )!=True:
                            imagesAnalysis[imageName].savefig(testFileName)
                            break
    
                imagesAnalysis[imageName].savefig(outputFileName + imageName + '.png')
    
        logging.info("Done:\t Result Analysis")
        viewIndex = args["viewIndex"]
        return viewIndex, [CL_type, cl_desc+[feat], metricsScores, full_labels]
        # # Classification Report with Precision, Recall, F1 , Support
        # logging.debug("Info:\t Classification report:")
        # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report"
        # logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList)))
        # scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList)
        #
        # # Create some useful statistcs
        # logging.debug("Info:\t Statistics:")
        # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats"
        # stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score)
        # logging.debug("\n" + stats_df.to_string())
        #
        # # Confusion Matrix
        # logging.debug("Info:\t Calculate Confusionmatrix")
        # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix"
        # df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList)
        # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg"
        # ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm)
        #
        # logging.debug("Done:\t Statistic Results")
        #
        #
        # # Plot Result
        # logging.debug("Start:\t Plot Result")
        # np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int))
        # ### directory and filename the same as CSV Export
        # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score"
        # ExportResults.showResults(directory, filename, name, feat, np_score)
        # logging.debug("Done:\t Plot Result")
        # return [CL_type, accuracy_score, cl_desc]
    
    
    if __name__=='__main__':
        parser = argparse.ArgumentParser(
            description='This methods permits to execute a multiclass classification with one single view. At this point the used classifier is a RandomForest. The GridSearch permits to vary the number of trees and CrossValidation with k-folds. The result will be a plot of the score per class and a CSV with the best classifier found by the GridSearch.',
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    
        groupStandard = parser.add_argument_group('Standard arguments')
        groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
        groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default=".hdf5")
        groupStandard.add_argument('--name', metavar='STRING', action='store', help='Name of Database (default: %(default)s)', default='DB')
        groupStandard.add_argument('--feat', metavar='STRING', action='store', help='Name of Feature for Classification (default: %(default)s)', default='RGB')
        groupStandard.add_argument('--pathF', metavar='STRING', action='store', help='Path to the views (default: %(default)s)', default='Results-FeatExtr/')
        groupStandard.add_argument('--fileCL', metavar='STRING', action='store', help='Name of classLabels CSV-file  (default: %(default)s)', default='classLabels.csv')
        groupStandard.add_argument('--fileCLD', metavar='STRING', action='store', help='Name of classLabels-Description CSV-file  (default: %(default)s)', default='classLabels-Description.csv')
        groupStandard.add_argument('--fileFeat', metavar='STRING', action='store', help='Name of feature CSV-file  (default: %(default)s)', default='feature.csv')
    
    
        groupClass = parser.add_argument_group('Classification arguments')
        groupClass.add_argument('--CL_type', metavar='STRING', action='store', help='Classifier to use', default="RandomForest")
        groupClass.add_argument('--CL_CV', metavar='INT', action='store', help='Number of k-folds for CV', type=int, default=10)
        groupClass.add_argument('--CL_Cores', metavar='INT', action='store', help='Number of cores, -1 for all', type=int, default=1)
        groupClass.add_argument('--CL_split', metavar='FLOAT', action='store', help='Split ratio for train and test', type=float, default=0.9)
        groupClass.add_argument('--CL_metrics', metavar='STRING', action='store',
                            help='Determine which metrics to use, separate with ":" if multiple, if empty, considering all', default='')
    
    
        groupClassifier = parser.add_argument_group('Classifier Config')
        groupClassifier.add_argument('--CL_config', metavar='STRING', nargs="+", action='store', help='GridSearch: Determine the trees', default=['25:75:125:175'])
    
        # groupSVMLinear = parser.add_argument_group('SVC arguments')
        # groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
        #
        # groupSVMRBF = parser.add_argument_group('SVC arguments')
        # groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
        #
        # groupRF = parser.add_argument_group('Decision Trees arguments')
        # groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
        #
        # groupSGD = parser.add_argument_group('SGD')
        # groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9')
        # groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log')
        # groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2')
    
    
        args = parser.parse_args()
    
        # RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
        # SVMLinearKWARGS = {"classifier__C":map(int,args.CL_SVML_C.split(":"))}
        # SVMRBFKWARGS = {"classifier__C":map(int,args.CL_SVMR_C.split(":"))}
        # DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
        # SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
        #              "classifier__penalty":args.CL_SGD_penalty.split(":")}
        classifierKWARGS = dict((key, value) for key, value in enumerate([arg.split(":") for arg in args.CL_config]))
        ### Main Programm
    
    
        # Configure Logger
        directory = os.path.dirname(os.path.abspath(__file__)) + "/Results-ClassMonoView/"
        logfilename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG"
        logfile = directory + logfilename
        if os.path.isfile(logfile + ".log"):
            for i in range(1,20):
                testFileName = logfilename  + "-" + str(i) + ".log"
                if os.path.isfile(directory + testFileName)!=True:
                    logfile = directory + testFileName
                    break
        else:
            logfile = logfile + ".log"
    
        logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', filename=logfile, level=logging.DEBUG, filemode='w')
    
        if(args.log):
            logging.getLogger().addHandler(logging.StreamHandler())
    
    
        # Read the features
        logging.debug("Start:\t Read " + args.type + " Files")
    
        if args.type == ".csv":
            X = np.genfromtxt(args.pathF + args.fileFeat, delimiter=';')
            Y = np.genfromtxt(args.pathF + args.fileCL, delimiter=';')
        elif args.type == ".hdf5":
            dataset = h5py.File(args.pathF + args.name + ".hdf5", "r")
            viewsDict = dict((dataset.get("View"+str(viewIndex)).attrs["name"], viewIndex) for viewIndex in range(dataset.get("Metadata").attrs["nbView"]))
            X = dataset["View"+str(viewsDict[args.feat])][...]
            Y = dataset["Labels"][...]
    
        logging.debug("Info:\t Shape of Feature:" + str(X.shape) + ", Length of classLabels vector:" + str(Y.shape))
        logging.debug("Done:\t Read CSV Files")
    
        arguments = {args.CL_type+"KWARGS": classifierKWARGS, "feat":args.feat,"fileFeat": args.fileFeat,
                     "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type}
        ExecMonoview(X, Y, args.name, args.CL_split, args.CL_CV, args.CL_Cores, args.type, args.pathF,
                     metrics=args.CL_metrics, **arguments)