Skip to content
Snippets Groups Projects
Commit f5fc2acc authored by Benoit Favre's avatar Benoit Favre
Browse files

add mistral and zephir runs

parent 66241ac3
No related branches found
No related tags found
No related merge requests found
...@@ -19,6 +19,9 @@ galactica-1.2b 0.0192 ...@@ -19,6 +19,9 @@ galactica-1.2b 0.0192
galactica-6.7b 0.0352 galactica-6.7b 0.0352
mpt-instruct-7b 0.0641 mpt-instruct-7b 0.0641
pmc-llama-7b 0.0224 pmc-llama-7b 0.0224
---
mistral-7b-instruct 0.1858
zephir-7b 0.2019
# trad automatique anglais (pas l'air de marcher) # trad automatique anglais (pas l'air de marcher)
en/bloomz-3b 0.1153 ?? en/bloomz-3b 0.1153 ??
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
def main(result_path: str, corpus_path: str, model: str = 'HuggingFaceH4/zephyr-7b-beta', template_id: str = '0'):
checkpoint = model
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
quant_config=BitsAndBytesConfig(
#load_in_8bit=True,
# llm_int8_threshold=6.0,
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_type=torch.bfloat16,
#llm_int8_enable_fp32_cpu_offload=True,
)
device_map = {
"": 0
}
llm = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device_map, torch_dtype=torch.float16)#, load_in_8bit=True) #quantization_config=quant_config)#, load_in_8bit=True)
def generate(input_string):
messages = [
#{
# "role": "system",
# "content": "You are a friendly chatbot who responds accuractly to the user without explaining the answer.",
#},
{"role": "user", "content": input_string},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
#inputs = tokenizer(input_string, return_tensors="pt")
outputs = llm.generate(encodeds.to('cuda'), max_new_tokens=32)#, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)#, pad_token_id=tokenizer.eos_token_id)
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated = generated[len(input_string):].split('[/INST]')[1]
return generated
#return generated.split('<|assistant|>')[-1].split('\n')[1]
#return generated[len(input_string):]
import deft
results = deft.run_inference(generate, corpus_path, deft.template_from_id(template_id))
deft.write_results(results, result_path)
if __name__ == '__main__':
import fire
fire.Fire(main)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
def main(result_path: str, corpus_path: str, model: str = 'HuggingFaceH4/zephyr-7b-beta', template_id: str = '0'):
checkpoint = model
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
quant_config=BitsAndBytesConfig(
#load_in_8bit=True,
# llm_int8_threshold=6.0,
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_type=torch.bfloat16,
#llm_int8_enable_fp32_cpu_offload=True,
)
device_map = {
"": 0
}
llm = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device_map, torch_dtype=torch.float16)#, load_in_8bit=True) #quantization_config=quant_config)#, load_in_8bit=True)
def generate(input_string):
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who responds accuractly to the user without explaining the answer.",
},
{"role": "user", "content": input_string},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
#inputs = tokenizer(input_string, return_tensors="pt")
outputs = llm.generate(encodeds.to('cuda'), max_new_tokens=32)#, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)#, pad_token_id=tokenizer.eos_token_id)
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated.split('<|assistant|>')[-1].split('\n')[1]
#return generated[len(input_string):]
import deft
results = deft.run_inference(generate, corpus_path, deft.template_from_id(template_id))
deft.write_results(results, result_path)
if __name__ == '__main__':
import fire
fire.Fire(main)
...@@ -33,3 +33,7 @@ python run_llama2_finetuned.py output/llama2-13b-deft_prompt0.txt data/dev.json ...@@ -33,3 +33,7 @@ python run_llama2_finetuned.py output/llama2-13b-deft_prompt0.txt data/dev.json
python run_llama2_finetuned.py output/llama2-13b-deft-comp_prompt0.txt data/dev.json llama-2-13b-hf models/llama-2-13b-deft-comp | tee logs/llama2-13b-deft-comp_prompt0.txt python run_llama2_finetuned.py output/llama2-13b-deft-comp_prompt0.txt data/dev.json llama-2-13b-hf models/llama-2-13b-deft-comp | tee logs/llama2-13b-deft-comp_prompt0.txt
python run_llama2_finetuned.py output/llama2-70b-deft_prompt0.txt data/dev.json llama-2-70b-hf models/llama-2-70b-deft | tee logs/llama2-70b-deft_prompt0.txt python run_llama2_finetuned.py output/llama2-70b-deft_prompt0.txt data/dev.json llama-2-70b-hf models/llama-2-70b-deft | tee logs/llama2-70b-deft_prompt0.txt
python run_llama2_finetuned.py output/llama2-70b-deft-comp_prompt0.txt data/dev.json llama-2-70b-hf models/llama-2-70b-deft-comp | tee logs/llama2-70b-deft-comp_prompt0.txt python run_llama2_finetuned.py output/llama2-70b-deft-comp_prompt0.txt data/dev.json llama-2-70b-hf models/llama-2-70b-deft-comp | tee logs/llama2-70b-deft-comp_prompt0.txt
# mistral
python run_zephir.py output/zephir-7b_prompt0.txt clean/data/dev.json HuggingFaceH4/zephyr-7b-beta | tee logs/zerphir-7b_prompt0.txt
python run_mistral.py output/mistral-7b-instruct-0.1_prompt0.txt clean/data/dev.json mistralai/Mistral-7B-Instruct-v0.1 | tee logs/mistral-7b-instruct-0.1_prompt0.txt
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment