Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • SMOTE
  • archive
  • cuisine
  • develop
  • master
  • no_graphviz
  • object
  • private_algos
  • revert-76c4cca5
9 results

Target

Select target project
  • baptiste.bauvin/summit
1 result
Select Git revision
  • SMOTE
  • archive
  • cuisine
  • develop
  • master
  • no_graphviz
  • object
  • private_algos
  • revert-76c4cca5
9 results
Show changes
Commits on Source (2)
......@@ -44,7 +44,7 @@ class GradientBoosting(GradientBoostingClassifier, BaseMonoviewClassifier):
)
self.param_names = ["n_estimators", "max_depth", "loss", "learning_rate"]
self.classed_params = []
self.distribs = [CustomRandint(low=50, high=500),
self.distribs = [CustomRandint(low=1, high=300),
CustomRandint(low=1, high=10),
['log_loss', 'deviance', 'exponential'],
CustomUniform(loc=0, state=1)]
......
import numpy as np
from ..monoview.monoview_utils import BaseMonoviewClassifier
from summit.multiview_platform.utils.hyper_parameter_search import CustomUniform
classifier_class_name = "LWLR"
class LWLR(BaseMonoviewClassifier):
def __init__(self, tau=0.05, reg=0.0001, threshold=1e-6, random_state=42):
self.reg = reg
self.threshold = threshold
self.tau = tau
self.random_state = random_state
self.param_names = ["tau", 'reg', "threshold"]
self.distribs = [CustomUniform(loc=1e-2, state=1),
CustomUniform(loc=1e-6, state=1e-2),
CustomUniform(loc=1e-8, state=1e-4)]
self.weird_strings={}
self.classed_params=[]
def weights(self, x_train, x):
sq_diff = (x_train - x) ** 2
norm_sq = sq_diff.sum(axis=1)
return np.ravel(np.exp(- norm_sq / (2 * self.tau ** 2)))
def logistic(self, x_train):
return np.ravel(1 / (1 + np.exp(-x_train.dot(self.theta))))
def fit(self, X, y, **fit_params):
self.X = X
self.y = y
def train(self, x):
self.w = self.weights(self.X, x)
self.theta = np.zeros(self.X.shape[1])
gradient = np.ones(self.X.shape[1]) * np.inf
while np.linalg.norm(gradient) > self.threshold:
# compute gradient
h = self.logistic(self.X)
gradient = self.X.T.dot(
self.w * (np.ravel(self.y) - h)) - self.reg * self.theta
# Compute Hessian
D = np.diag(-(self.w * h * (1 - h)))
H = self.X.T.dot(D).dot(self.X) - self.reg * np.identity(
self.X.shape[1])
# weight update
self.theta = self.theta - np.linalg.inv(H).dot(gradient)
def predict(self, X):
preds = []
for x in X:
self.train(x)
preds.append(np.array(self.logistic(X) > 0.5).astype(int)[0])
return np.array(preds)
from learners.algorithms.lwlr import LWLRLearner
from ..monoview.monoview_utils import BaseMonoviewClassifier
from summit.multiview_platform.utils.hyper_parameter_search import CustomUniform
# Author-Info
__author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "SVMRBF"
class LWLRClassifier(LWLRLearner, BaseMonoviewClassifier):
"""
This class is an adaptation of scikit-learn's `SVC <https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html>`_
Here, it is the RBF kernel version
"""
def __init__(self, random_state=None, sigma="auto", nn=1.0, **kwargs):
LWLRLearner.__init__(self,
C=C,
kernel='rbf',
gamma=gamma,
random_state=random_state
)
self.param_names = ["C", 'gamma', "random_state"]
self.distribs = [CustomUniform(loc=1e-3, state=1e3), CustomUniform(loc=1e-1, state=1e1), [random_state]]
......@@ -40,7 +40,7 @@ class SCMboost(AdaBoostClassifier, BaseMonoviewClassifier):
algorithm="SAMME",)
self.param_names = ["n_estimators", "base_estimator__p", "base_estimator__model_type", "base_estimator__max_rules"]
self.classed_params = []
self.distribs = [CustomRandint(low=1, high=100), CustomUniform(loc=0, state=1), ["conjunction", "disjunction"], CustomRandint(low=1, high=20)]
self.distribs = [CustomRandint(low=1, high=100), CustomUniform(loc=0, state=1), ["conjunction", "disjunction"], CustomRandint(low=1, high=5)]
self.weird_strings = {}
......
......@@ -18,11 +18,12 @@ class SVMRBF(SVCClassifier, BaseMonoviewClassifier):
Here, it is the RBF kernel version
"""
def __init__(self, random_state=None, C=1.0, **kwargs):
def __init__(self, random_state=None, gamma="auto", C=1.0, **kwargs):
SVCClassifier.__init__(self,
C=C,
kernel='rbf',
gamma=gamma,
random_state=random_state
)
self.param_names = ["C", "random_state"]
self.distribs = [CustomUniform(loc=0, state=1), [random_state]]
self.param_names = ["C", 'gamma', "random_state"]
self.distribs = [CustomUniform(loc=1e-3, state=1e3), CustomUniform(loc=1e-1, state=1e1), [random_state]]
......@@ -32,7 +32,7 @@ class XGB(XGBClassifier, BaseMonoviewClassifier):
random_state=random_state)
self.param_names = ["n_estimators", "learning_rate", "max_depth", "objective"]
self.classed_params = []
self.distribs = [CustomRandint(low=10, high=500),
self.distribs = [CustomRandint(low=1, high=300),
CustomUniform(),
CustomRandint(low=1, high=10),
['binary:logistic', 'binary:hinge', ],]
......
......@@ -43,14 +43,21 @@ def remove_compressed(exp_path):
if __name__=="__main__":
# for dir in os.listdir("/home/baptiste/Documents/Gitwork/summit/results/"):
for dir in os.listdir("/home/baptiste/Documents/Gitwork/summit/results/"):
if os.path.isdir(os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir)):
for exp in os.listdir((os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir))):
print("\t", exp)
if os.path.isdir(os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir, exp)):
explore_files(os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir, exp))
plif = dict()
# for dir in os.listdir("/home/baptiste/Documents/Clouded/short_projects/SCMBoost/results"):
# print(dir)
# for exp in os.listdir((os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir))):
# for exp in os.listdir((os.path.join("/home/baptiste/Documents/Clouded/short_projects/SCMBoost/results", dir))):
# print("\t", exp)
# if os.path.isdir(os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir, exp)):
# explore_files(os.path.join("/home/baptiste/Documents/Gitwork/summit/results/", dir, exp))
# if os.path.isdir(os.path.join("/home/baptiste/Documents/Clouded/short_projects/SCMBoost/results", dir, exp)):
# explore_files(os.path.join("/home/baptiste/Documents/Clouded/short_projects/SCMBoost/results", dir, exp))
# # explore_files("/home/baptiste/Documents/Gitwork/biobanq_covid_expes/results/")
explore_files("/home/baptiste/Documents/Gitwork/summit/results/clinical/debug_started_2023_04_05-08_23_00_bal_acc")
# explore_files("/home/baptiste/Documents/Gitwork/summit/results/clinical/debug_started_2023_04_05-08_23_00_bal_acc")
# explore_files(
# "/home/baptiste/Documents/Gitwork/summit/results/lives_thesis_EMF/debug_started_2023_03_24-10_02_21_thesis")
# # simplify_plotly("/home//baptiste/Documents/Gitwork/summit/results/hepatitis/debug_started_2022_03_16-15_06_55__/hepatitis-mean_on_10_iter-balanced_accuracy_p.html")