Skip to content
Snippets Groups Projects
Commit e8ba6b3a authored by nikolasph's avatar nikolasph
Browse files

Updates

parent 509756ae
No related branches found
No related tags found
No related merge requests found
......@@ -147,12 +147,13 @@ cl_desc = df_feat_res.c_cl_desc.values
# Description of Feature
feat_desc = df_feat_res.a_feat_desc.values
store = True
fileName = dir + datetime.datetime.now().strftime("%Y_%m_%d") + "-" + "Feature_" + args.feature + "-Parameter_" + args.param
# Show Results for Calculation
ExportResults.showScoreTime(fileName + "-TotalTime.png", score, tot_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Total Time (Feature Extraction+Classification)\n [s]')
ExportResults.showScoreTime(fileName + "-FeatExtTime.png", score, feat_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Feature Extraction Time\n [s]')
ExportResults.showScoreTime(fileName + "-ClassTime.png", score, cl_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Classification Time\n [s]')
ExportResults.showScoreTime(fileName + "-TotalTime.png", store, score, tot_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Total Time (Feature Extraction+Classification)\n [s]')
ExportResults.showScoreTime(fileName + "-FeatExtTime.png", store, score, feat_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Feature Extraction Time\n [s]')
ExportResults.showScoreTime(fileName + "-ClassTime.png", store, score, cl_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Classification Time\n [s]')
......
import pandas as pd
import numpy as np
import datetime
import argparse # for acommand line arguments
import os # to geth path of the running script
import ExportResults # Functions to render results
parser = argparse.ArgumentParser(
description='This methods permits to execute a multiclass classification with one single view. At this point the used classifier is a RandomForest. The GridSearch permits to vary the number of trees and CrossValidation with k-folds.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
args.valueEnd = 5
args.valueStart =75
args.nCalcs = 8
args.feature = "HOG"
args.param = "HOG_Cluster"
df_feat_res = pd.DataFrame.from_csv(path="D:\\BitBucket\\multiview-machine-learning-omis\\Code\\FeatExtraction\\Results-FeatParaOpt\\2016_03_19-FeatParaOpt-HOG.csv", sep=';')
# Get data from result to show results in plot
# Total time for feature extraction and classification
tot_time = df_feat_res.b_feat_extr_time.values + df_feat_res.e_cl_time.values
tot_time = np.asarray(tot_time)
# Time for feature extraction
feat_time = df_feat_res.b_feat_extr_time.values
feat_time = np.asarray(feat_time)
# Time for classification
cl_time = df_feat_res.e_cl_time.values
cl_time = np.asarray(cl_time)
# Mean Score of all classes
score = df_feat_res.f_cl_score.values
score = np.asarray(score)
# Range on X-Axis
if(args.nCalcs>1):
step = float(args.valueEnd-args.valueStart)/float(args.nCalcs-1)
rangeX = np.around(np.array(range(0,args.nCalcs))*step) + args.valueStart
else:
rangeX = [args.valueStart]
rangeX = np.asarray(rangeX)
# Description of Classification
cl_desc = df_feat_res.c_cl_desc.values
# Description of Feature
feat_desc = df_feat_res.a_feat_desc.values
dir = os.path.dirname(os.path.abspath(__file__)) + "/Results-FeatParaOpt/"
fileName = dir + datetime.datetime.now().strftime("%Y_%m_%d") + "-" + "Feature_" + args.feature + "-Parameter_" + args.param
store = False
# Show Results for Calculation
ExportResults.showScoreTime(fileName + "-TotalTime.png", store, score, tot_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Total Time (Feature Extraction+Classification)\n [s]')
ExportResults.showScoreTime(fileName + "-FeatExtTime.png", store, score, feat_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Feature Extraction Time\n [s]')
ExportResults.showScoreTime(fileName + "-ClassTime.png", store, score, cl_time, rangeX, args.param, feat_desc, cl_desc, 'Results for Parameter Optimisation', 'Precision', 'Classification Time\n [s]')
\ No newline at end of file
......@@ -28,11 +28,11 @@ def exportPandasToCSV(pandasSorDF, dir, filename):
for i in range(1,20):
testFileName = filename + "-" + str(i) + ".csv"
if os.path.isfile(dir + testFileName)!=True:
pandasSorDF.to_csv(dir + testFileName, sep=',')
pandasSorDF.to_csv(dir + testFileName, sep=';')
break
else:
pandasSorDF.to_csv(file + ".csv", sep=',')
pandasSorDF.to_csv(file + ".csv", sep=';')
def exportNumpyToCSV(numpyArray, dir, filename, format):
......@@ -42,17 +42,17 @@ def exportNumpyToCSV(numpyArray, dir, filename, format):
for i in range(1,20):
testFileName = filename + "-" + str(i) + ".csv"
if os.path.isfile(dir + testFileName )!=True:
np.savetxt(dir + testFileName, numpyArray, delimiter=",", fmt=format)
np.savetxt(dir + testFileName, numpyArray, delimiter=";", fmt=format)
break
else:
np.savetxt(file + ".csv", numpyArray, delimiter=",", fmt=format)
np.savetxt(file + ".csv", numpyArray, delimiter=";", fmt=format)
#### Rendering of results
### Rendering of Score and Time
def showScoreTime(filename, resScore, resTime, rangeX, parameter, feat_desc, cl_desc, fig_desc, y_desc1, y_desc2):
def showScoreTime(filename, store, resScore, resTime, rangeX, parameter, feat_desc, cl_desc, fig_desc, y_desc1, y_desc2):
# Determine interpolated functions
f_score_interp = interp1d(rangeX, resScore, kind='quadratic')
f_time_interp = interp1d(rangeX, resTime, kind='quadratic')
......@@ -111,12 +111,10 @@ def showScoreTime(filename, resScore, resTime, rangeX, parameter, feat_desc, cl_
plt.title(fig_desc, fontsize=18)
if(store):
plt.savefig(filename)
# instead of saving - decomment plt.show()
# plt.show()
else:
plt.show()
### Result comparision per class
......
;a_feat_desc;b_feat_extr_time;c_cl_desc;d_cl_res;e_cl_time;f_cl_score
0;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_10-Maxiter_100;919.0956721305847;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";184.36450791358948;0.36555023923444974
1;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100;902.1321420669556;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";234.061616897583;0.3949419002050581
2;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_30-Maxiter_100;1091.6442930698395;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";283.3998420238495;0.4157211209842789
3;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_40-Maxiter_100;1120.3388640880585;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";329.4008128643036;0.41066302118933695
4;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_50-Maxiter_100;1151.4867160320282;Classif_RF-CV_8-Trees_150;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";407.7028250694275;0.40437457279562544
;a_feat_desc;b_feat_extr_time;c_cl_desc;d_cl_res;e_cl_time;f_cl_score
0;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_5-Maxiter_100;909.2955379486084;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";125.15065908432007;0.2530416951469583
1;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_15-Maxiter_100;935.2981481552124;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";183.69755601882935;0.382365003417635
2;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_25-Maxiter_100;1027.5009920597076;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";283.1033492088318;0.3979494190020506
3;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_35-Maxiter_100;962.9278299808502;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";321.2544548511505;0.40833902939166095
4;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_45-Maxiter_100;1186.1991739273071;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";342.2763469219208;0.4047846889952153
5;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_55-Maxiter_100;1210.7082569599152;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";399.62198305130005;0.40847573479152427
6;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_65-Maxiter_100;1333.6005101203918;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";439.3210971355438;0.40382775119617226
7;Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_75-Maxiter_100;1310.9493820667267;Classif_RF-CV_8-Trees_200;"GridSearchCV(cv=8,
estimator=Pipeline(classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=No...jobs=1,
classifier__oob_score=False, classifier__random_state=None,
classifier__verbose=0),
estimator__classifier=RandomForestClassifier(bootstrap=True, compute_importances=None,
criterion=gini, max_depth=None, max_features=auto,
min_density=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0),
estimator__classifier__bootstrap=True,
estimator__classifier__compute_importances=None,
estimator__classifier__criterion=gini,
estimator__classifier__max_depth=None,
estimator__classifier__max_features=auto,
estimator__classifier__min_density=None,
estimator__classifier__min_samples_leaf=1,
estimator__classifier__min_samples_split=2,
estimator__classifier__n_estimators=10,
estimator__classifier__n_jobs=1,
estimator__classifier__oob_score=False,
estimator__classifier__random_state=None,
estimator__classifier__verbose=0, fit_params={}, iid=True,
loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150, 200]},
pre_dispatch=2*n_jobs, refit=True, score_func=None,
scoring=accuracy, verbose=0)";445.3156099319458;0.4079289131920711
# Init
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment