Skip to content
Snippets Groups Projects
Commit dc7af26f authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Merge remote-tracking branch 'github_ml/master' into develop

parents 59a42096 2fc391ca
No related branches found
No related tags found
No related merge requests found
from pyscm.scm import SetCoveringMachineClassifier as scm
import numpy as np
from ..monoview.monoview_utils import BaseMonoviewClassifier
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
# Author-Info
__author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
# class Decis
classifier_class_name = "SCM"
class SCM(scm, BaseMonoviewClassifier):
"""
SCM Classifier
Parameters
----------
random_state (default : None)
model_type : string (default: "conjunction")
max_rules : int number maximum of rules (default : 10)
p : float value(default : 0.1 )
kwarg : others arguments
Attributes
----------
param_names
distribs
classed_params
weird_strings
"""
def __init__(self, random_state=None, model_type="conjunction",
max_rules=10, p=0.1, **kwargs):
"""
Parameters
----------
random_state
model_type
max_rules
p
kwargs
"""
super(SCM, self).__init__(
random_state=random_state,
model_type=model_type,
max_rules=max_rules,
p=p
)
self.param_names = ["model_type", "max_rules", "p", "random_state"]
self.distribs = [["conjunction", "disjunction"],
CustomRandint(low=1, high=15),
CustomUniform(loc=0, state=1), [random_state]]
self.classed_params = []
self.weird_strings = {}
def fit(self, X, y, tiebreaker=None, iteration_callback=None, **fit_params):
self.n_features = X.shape[1]
scm.fit(self, X, y, tiebreaker=None, iteration_callback=None, **fit_params)
self.feature_importances_ = np.zeros(self.n_features)
# sum the rules importances :
# rules_importances = estim.get_rules_importances() #activate it when pyscm will implement importance
rules_importances = np.ones(len(
self.model_.rules)) # delete it when pyscm will implement importance
for rule, importance in zip(self.model_.rules, rules_importances):
self.feature_importances_[rule.feature_idx] += importance
self.feature_importances_ /= np.sum(self.feature_importances_)
return self
# def canProbas(self):
# """
# Used to know if the classifier can return label probabilities
#
# Returns
# -------
# return False in any case
# """
# return False
def get_interpretation(self, directory, base_file_name, y_test, feature_ids,
multi_class=False):
interpret_string = self.get_feature_importance(directory,
base_file_name,
feature_ids)
interpret_string += "Model used : " + str(self.model_)
return interpret_string
def paramsToSet(nIter, random_state):
paramsSet = []
for _ in range(nIter):
paramsSet.append(
{"model_type": random_state.choice(["conjunction", "disjunction"]),
"max_rules": random_state.randint(1, 15),
"p": random_state.random_sample()})
return paramsSet
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment