Skip to content
Snippets Groups Projects
Commit d44fdc3f authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Avoid multiple temp file to crush themselves with random

parent 3aced0d5
No related branches found
No related tags found
No related merge requests found
......@@ -34,13 +34,14 @@ class SCMPregen(scm, BaseMonoviewClassifier, PregenClassifier):
def fit(self, X, y, tiebreaker=None, iteration_callback=None, **fit_params):
pregen_X, _ = self.pregen_voters(X, y)
list_files = os.listdir(".")
if "pregen_x.csv" in list_files:
i = 0
file_name = "pregen_x" + str(i) + ".csv"
a = int(np.random.randint(0, 10000))
if "pregen_x"+str(a)+".csv" in list_files:
a = int(np.random.randint(0, 10000))
file_name = "pregen_x" + str(a) + ".csv"
while file_name in list_files:
i += 1
a = int(np.random.randint(0, 10000))
else:
file_name="pregen_x.csv"
file_name = "pregen_x"+str(a)+".csv"
np.savetxt(file_name, pregen_X, delimiter=',')
place_holder = np.genfromtxt(file_name, delimiter=',')
os.remove(file_name)
......
......@@ -36,13 +36,14 @@ class SCMPregenTree(scm, BaseMonoviewClassifier, PregenClassifier):
def fit(self, X, y, tiebreaker=None, iteration_callback=None, **fit_params):
pregen_X, _ = self.pregen_voters(X, y, generator="Trees")
list_files = os.listdir(".")
if "pregen_x.csv" in list_files:
i = 0
file_name = "pregen_x" + str(i) + ".csv"
a = int(np.random.randint(0, 10000))
if "pregen_x"+str(a)+".csv" in list_files:
a = int(np.random.randint(0, 10000))
file_name = "pregen_x" + str(a) + ".csv"
while file_name in list_files:
i += 1
a = int(np.random.randint(0, 10000))
else:
file_name = "pregen_x.csv"
file_name = "pregen_x"+str(a)+".csv"
np.savetxt(file_name, pregen_X, delimiter=',')
place_holder = np.genfromtxt(file_name, delimiter=',')
os.remove(file_name)
......@@ -52,13 +53,14 @@ class SCMPregenTree(scm, BaseMonoviewClassifier, PregenClassifier):
def predict(self, X):
pregen_X, _ = self.pregen_voters(X, generator="Trees")
list_files = os.listdir(".")
if "pregen_x.csv" in list_files:
i = 0
file_name = "pregen_x" + str(i) + ".csv"
a = int(np.random.randint(0, 10000))
if "pregen_x"+str(a)+".csv" in list_files:
a = int(np.random.randint(0, 10000))
file_name = "pregen_x" + str(a) + ".csv"
while file_name in list_files:
i += 1
a = int(np.random.randint(0, 10000))
else:
file_name="pregen_x.csv"
file_name = "pregen_x"+str(a)+".csv"
np.savetxt(file_name, pregen_X, delimiter=',')
place_holder = np.genfromtxt(file_name, delimiter=',')
os.remove(file_name)
......
......@@ -43,13 +43,14 @@ class SCMSparsity(BaseMonoviewClassifier, PregenClassifier):
def fit(self, X, y, tiebreaker=None, iteration_callback=None, **fit_params):
pregen_X, _ = self.pregen_voters(X, y)
list_files = os.listdir(".")
if "pregen_x.csv" in list_files:
i = 0
file_name = "pregen_x" + str(i) + ".csv"
a = int(np.random.randint(0, 10000))
if "pregen_x"+str(a)+".csv" in list_files:
a = int(np.random.randint(0, 10000))
file_name = "pregen_x" + str(a) + ".csv"
while file_name in list_files:
i += 1
a = int(np.random.randint(0, 10000))
else:
file_name = "pregen_x.csv"
file_name = "pregen_x"+str(a)+".csv"
np.savetxt(file_name, pregen_X, delimiter=',')
place_holder = np.genfromtxt(file_name, delimiter=',')
os.remove(file_name)
......
......@@ -43,13 +43,14 @@ class SCMSparsityTree(BaseMonoviewClassifier, PregenClassifier):
def fit(self, X, y, tiebreaker=None, iteration_callback=None, **fit_params):
pregen_X, _ = self.pregen_voters(X, y, generator="Trees")
list_files = os.listdir(".")
if "pregen_x.csv" in list_files:
i = 0
file_name = "pregen_x" + str(i) + ".csv"
a = int(np.random.randint(0, 10000))
if "pregen_x"+str(a)+".csv" in list_files:
a = int(np.random.randint(0, 10000))
file_name = "pregen_x" + str(a) + ".csv"
while file_name in list_files:
i += 1
a = int(np.random.randint(0, 10000))
else:
file_name = "pregen_x.csv"
file_name = "pregen_x"+str(a)+".csv"
np.savetxt(file_name, pregen_X, delimiter=',')
place_holder = np.genfromtxt(file_name, delimiter=',')
os.remove(file_name)
......@@ -64,13 +65,14 @@ class SCMSparsityTree(BaseMonoviewClassifier, PregenClassifier):
def predict(self, X):
pregen_X, _ = self.pregen_voters(X, generator="Trees")
list_files = os.listdir(".")
if "pregen_x.csv" in list_files:
i=0
file_name="pregen_x"+str(i)+".csv"
a = int(np.random.randint(0, 10000))
if "pregen_x"+str(a)+".csv" in list_files:
a = int(np.random.randint(0, 10000))
file_name = "pregen_x" + str(a) + ".csv"
while file_name in list_files:
i+=1
a = int(np.random.randint(0, 10000))
else:
file_name="pregen_x.csv"
file_name = "pregen_x"+str(a)+".csv"
np.savetxt(file_name, pregen_X, delimiter=',')
place_holder = np.genfromtxt(file_name, delimiter=',')
os.remove(file_name)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment