Skip to content
Snippets Groups Projects
Commit cd1a3d43 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Valid

parent 395c1dcd
Branches
No related tags found
No related merge requests found
Pipeline #10814 failed
Showing
with 0 additions and 76 deletions
......@@ -11,10 +11,7 @@ from ..monoview.monoview_utils import CustomRandint, \
BaseMonoviewClassifier, change_label_to_minus, change_label_to_zero
classifier_class_name = "AdaboostGraalpy"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class AdaBoostGP(BaseEstimator, ClassifierMixin, BaseBoost):
"""Scikit-Learn compatible AdaBoost classifier. Original code by Pascal Germain, adapted by Jean-Francis Roy.
......
......@@ -16,11 +16,7 @@ __status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "AdaboostPregen"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class AdaboostPregen(AdaBoostClassifier, BaseMonoviewClassifier,
PregenClassifier):
......
......@@ -316,19 +316,11 @@ class CBBoostClassifier(BaseEstimator, ClassifierMixin, BaseBoost):
def init_hypotheses(self, X, y):
"""Inintialization for the hyptotheses used to build the boosted vote"""
<<<<<<< HEAD
if self.estimators_generator is "Stumps":
self.estimators_generator = StumpsClassifiersGenerator(
n_stumps_per_attribute=self.n_stumps,
self_complemented=self.self_complemented)
if self.estimators_generator is "Trees":
=======
if self.estimators_generator == "Stumps":
self.estimators_generator = StumpsClassifiersGenerator(
n_stumps_per_attribute=self.n_stumps,
self_complemented=self.self_complemented)
if self.estimators_generator == "Trees":
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
self.estimators_generator = TreeClassifiersGenerator(
n_trees=self.n_stumps, max_depth=self.max_depth,
self_complemented=self.self_complemented)
......
......@@ -11,10 +11,7 @@ from ..utils.hyper_parameter_search import CustomRandint
from ..monoview_classifiers.spkm import SPKM
classifier_class_name = "BaggedSPKM"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class BaggedSPKM(BaseMonoviewClassifier, SPKMlikeSklearn):
......
......@@ -16,10 +16,7 @@ __status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "Bagging"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class Bagging(BaggingClassifier, BaseMonoviewClassifier,):
"""
......
......@@ -16,10 +16,7 @@ __status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "BaggingPregen"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class BaggingPregen(BaggingClassifier, BaseMonoviewClassifier,
PregenClassifier):
......
......@@ -77,16 +77,11 @@ class CBBoost(CBBoostClassifier, BaseMonoviewClassifier):
-------
"""
<<<<<<< HEAD
interpret_string = self.getInterpretCBBoost(directory, base_file_name, y_test)
interpret_string += self.get_feature_importance(directory, base_file_name)
=======
interpret_string = self.getInterpretCBBoost(directory, base_file_name,
y_test)
interpret_string += self.get_feature_importance(directory,
base_file_name,
feature_ids)
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
return interpret_string
def get_name_for_fusion(self):
......
......@@ -23,10 +23,7 @@ __author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "CBGradientBoosting"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class CustomDecisionTreeGB(DecisionTreeClassifier):
......
......@@ -3,10 +3,7 @@ from ..monoview.monoview_utils import BaseMonoviewClassifier, CustomRandint
classifier_class_name = "CGDesc"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class CGDesc(ColumnGenerationClassifierQar, BaseMonoviewClassifier):
"""
......
......@@ -6,10 +6,7 @@ from ..monoview.monoview_utils import BaseMonoviewClassifier
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
classifier_class_name = "CQBoost"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class CQBoost(ColumnGenerationClassifier, BaseMonoviewClassifier):
......
......@@ -12,10 +12,7 @@ __author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "DecisionTreePregen"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class DecisionTreePregen(DecisionTreeClassifier, BaseMonoviewClassifier,
PregenClassifier):
......
......@@ -17,10 +17,7 @@ __status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "GradientBoostingPregen"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class GradientBoostingPregen(GradientBoostingClassifier, BaseMonoviewClassifier,
PregenClassifier):
......
......@@ -7,10 +7,7 @@ import numpy.ma as ma
import math
classifier_class_name = "CBBoostGradientBoosting"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class CBBoostGradientBoosting(CBBoostClassifier, BaseMonoviewClassifier):
"""
......
......@@ -8,10 +8,7 @@ from ..utils.base import base_boosting_estimators
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
classifier_class_name = "IBRF"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class IBRF(BaseMonoviewClassifier, BalancedBaggingClassifier):
......
......@@ -8,10 +8,7 @@ from ..utils.base import base_boosting_estimators
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
classifier_class_name = "IBRSCM"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class IBRSCM(BaseMonoviewClassifier, BalancedBaggingClassifier):
......
......@@ -7,10 +7,7 @@ from ..utils.base import base_boosting_estimators
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
classifier_class_name = "IBSCM"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class IBSCM(BaseMonoviewClassifier, BalancedBaggingClassifier):
......
......@@ -7,10 +7,7 @@ from ..utils.base import base_boosting_estimators
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
classifier_class_name = "ImbalanceBagging"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class ImbalanceBagging(BaseMonoviewClassifier, BalancedBaggingClassifier):
......
......@@ -23,10 +23,7 @@ from .additions.BoostUtils import ConvexProgram as QP
classifier_class_name = "MinCQ"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
# from majority_vote import MajorityVote
# from voter import StumpsVotersGenerator, KernelVotersGenerator
......
......@@ -6,10 +6,7 @@ from ..monoview.monoview_utils import BaseMonoviewClassifier
from ..utils.hyper_parameter_search import CustomRandint, CustomUniform
classifier_class_name = "MinCQGraalpy"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class MinCQGraalpy(RegularizedBinaryMinCqClassifier, BaseMonoviewClassifier):
"""
......
......@@ -17,10 +17,7 @@ __author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
classifier_class_name = "PGradientBoosting"
<<<<<<< HEAD
=======
proto=True
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
class CustomDecisionTreeGB(DecisionTreeClassifier):
......@@ -63,19 +60,11 @@ class PGradientBoosting(GradientBoostingClassifier, BaseMonoviewClassifier, Base
def pregen_voters(self, X, y=None, generator="Stumps"):
if y is not None:
neg_y = change_label_to_minus(y)
<<<<<<< HEAD
if generator is "Stumps":
self.estimators_generator = StumpsClassifiersGenerator(
n_stumps_per_attribute=self.n_stumps,
self_complemented=self.self_complemented)
elif generator is "Trees":
=======
if generator == "Stumps":
self.estimators_generator = StumpsClassifiersGenerator(
n_stumps_per_attribute=self.n_stumps,
self_complemented=self.self_complemented)
elif generator == "Trees":
>>>>>>> 258ada8c7e5025f984b03343596557abe8d3f5a4
self.estimators_generator = TreeClassifiersGenerator(
n_trees=self.n_stumps, max_depth=self.max_depth_pregen)
self.estimators_generator.fit(X, neg_y)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment