Skip to content
Snippets Groups Projects
Commit bc15bc81 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Debugging getmutiviewdb & finished Mumbo fat analsis function

parent 369069b5
No related tags found
No related merge requests found
...@@ -733,7 +733,7 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES): ...@@ -733,7 +733,7 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
def getModifiedMultiOmicDBhdf5(features, path, name, NB_CLASS, LABELS_NAMES): def getModifiedMultiOmicDBhdf5(features, path, name, NB_CLASS, LABELS_NAMES):
datasetFile = h5py.File(path+"ModifiedMultiOmicb.hdf5", "r") datasetFile = h5py.File(path+"ModifiedMultiOmic.hdf5", "r")
labelDictionary = {0:"No", 1:"Yes"} labelDictionary = {0:"No", 1:"Yes"}
return datasetFile, labelDictionary return datasetFile, labelDictionary
......
...@@ -224,8 +224,49 @@ def getClassificationReport(kFolds, kFoldClassifier, CLASS_LABELS, validationInd ...@@ -224,8 +224,49 @@ def getClassificationReport(kFolds, kFoldClassifier, CLASS_LABELS, validationInd
for foldIdx in range(len(kFolds)): for foldIdx in range(len(kFolds)):
kFoldBestViewsStatsM.append(np.mean(np.array([iterKFoldBestViewsStats[statIterIndex][foldIdx] for statIterIndex in range(statsIter)]))) kFoldBestViewsStatsM.append(np.mean(np.array([iterKFoldBestViewsStats[statIterIndex][foldIdx] for statIterIndex in range(statsIter)])))
bestViewVotes = np.zeros(nbView) bestViewVotes = np.zeros(nbView)
MeanAverageAccuraciesM = np.zeros((statsIter, nbView))
AccuracyOnValidationByIterM = []
AccuracyOnTrainByIterM = []
AccuracyOnTestByIterM = []
nbTrainIterations = []
nbTestIterations = []
nbValidationIterations = np.zeros(statsIter)
for statIterIndex in range(statsIter): for statIterIndex in range(statsIter):
bestViewVotes[viewsDict[iterKFoldBestViews[statIterIndex][foldIdx]]]+=1 bestViewVotes[viewsDict[iterKFoldBestViews[statIterIndex][foldIdx]]]+=1
MeanAverageAccuraciesM[statIterIndex] = np.array(iterKFoldMeanAverageAccuracies[statIterIndex][foldIdx])
nbTrainIterations[statIterIndex] = len(iterKFoldAccuracyOnTrainByIter[statIterIndex][foldIdx])
nbTestIterations[statIterIndex] = len(iterKFoldAccuracyOnTestByIter[statIterIndex][foldIdx])
nbValidationIterations[statIterIndex] = len(iterKFoldAccuracyOnValidationByIter[statIterIndex][foldIdx])
for valdiationAccuracyIndex, valdiationAccuracy in enumerate(iterKFoldAccuracyOnValidationByIter[statIterIndex][foldIdx]):
if statIterIndex==0:
AccuracyOnValidationByIterM.append([])
AccuracyOnValidationByIterM[valdiationAccuracyIndex].append(valdiationAccuracy)
else:
AccuracyOnValidationByIterM[valdiationAccuracyIndex].append(valdiationAccuracy)
for trainAccuracyIndex, trainAccuracy in enumerate(iterKFoldAccuracyOnTrainByIter[statIterIndex][foldIdx]):
if statIterIndex==0:
AccuracyOnTrainByIterM.append([])
AccuracyOnTrainByIterM[trainAccuracyIndex].append(trainAccuracy)
else:
AccuracyOnTestByIterM[trainAccuracyIndex].append(trainAccuracy)
for testAccuracyIndex, testAccuracy in enumerate(iterKFoldAccuracyOnTestByIter[statIterIndex][foldIdx]):
if statIterIndex==0:
AccuracyOnTestByIterM.append([])
AccuracyOnTestByIterM[testAccuracyIndex].append(testAccuracy)
else:
AccuracyOnTestByIterM[testAccuracyIndex].append(testAccuracy)
AccuracyOnValidationByIterM.append(iterKFoldAccuracyOnValidationByIter[statIterIndex][foldIdx])
AccuracyOnTrainByIterM.append(iterKFoldAccuracyOnTrainByIter[statIterIndex][foldIdx])
AccuracyOnTestByIterM.append(iterKFoldAccuracyOnTestByIter[statIterIndex][foldIdx])
kFoldAccuracyOnTrainByIterM.append([np.mean(np.array(accuracies)) for accuracies in AccuracyOnTrainByIterM])
kFoldAccuracyOnTestByIterM.append([np.mean(np.array(accuracies)) for accuracies in AccuracyOnTestByIterM])
kFoldAccuracyOnValidationByIterM.append([np.mean(np.array(accuracies)) for accuracies in AccuracyOnValidationByIterM])
kFoldMeanAverageAccuraciesM.append(np.mean(MeanAverageAccuraciesM, axis=0))
kFoldBestViewsM.append(viewIndices[np.argmax(bestViewVotes)]) kFoldBestViewsM.append(viewIndices[np.argmax(bestViewVotes)])
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment