Skip to content
Snippets Groups Projects
Commit ba8a026a authored by bbauvin's avatar bbauvin
Browse files

Deleted res from git 2

parent b2c2cd72
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 2675 deletions
0;accordion
1;anchor
2;barrel
3;bass
4;beaver
5;binocular
6;dragonfly
7;flamingo
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
0.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
1.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
2.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
3.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
4.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
5.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
6.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
7.000000000000000000000000000000
Results/Results-FeatOpt-RGB/2016_01_24-RGB-ClassificationTime.png

160 KiB

Results/Results-FeatOpt-RGB/2016_01_24-RGB-FeatExtractTime.png

158 KiB

Results/Results-FeatOpt-RGB/2016_01_24-RGB-TotalTime.png

160 KiB

;a_feat_desc;b_feat_extr_time;c_cl_desc;d_cl_res;e_cl_time;f_cl_score
0;CT-RGB-Bins_8-MaxCI_256-Norm_Distr;16,071;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";29,709;0,276704
1;CT-RGB-Bins_16-MaxCI_256-Norm_Distr;17,192;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";42,755;0,296391
2;CT-RGB-Bins_24-MaxCI_256-Norm_Distr;19,387;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";64,978;0,312796
3;CT-RGB-Bins_32-MaxCI_256-Norm_Distr;24,506;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";74,039;0,321546
4;CT-RGB-Bins_40-MaxCI_256-Norm_Distr;26,119;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";81,705;0,319723
5;CT-RGB-Bins_48-MaxCI_256-Norm_Distr;26,326;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";95,86;0,287277
6;CT-RGB-Bins_56-MaxCI_256-Norm_Distr;22,426;Classif_RF-CV_5-Trees_100;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";89,742;0,302588
7;CT-RGB-Bins_64-MaxCI_256-Norm_Distr;142,262;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 100, 150]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";103,376;0,310244
;a_feat_desc;b_feat_extr_time;c_cl_desc;d_cl_res;e_cl_time;f_cl_score
0;CT-SURF-Cluster_50.0-Norm_Distr;1371,7;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 101, 150, 200]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";79,638;0,327014
1;CT-SURF-Cluster_100.0-Norm_Distr;8495,44;Classif_RF-CV_5-Trees_200;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 101, 150, 200]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";111,646;0,329202
2;CT-SURF-Cluster_150.0-Norm_Distr;41403,7;Classif_RF-CV_5-Trees_200;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 101, 150, 200]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";142,393;0,33467
3;CT-SURF-Cluster_200.0-Norm_Distr;59108,8;Classif_RF-CV_5-Trees_150;"GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'classifier__n_estimators': [50, 101, 150, 200]},
pre_dispatch='2*n_jobs', refit=True, score_func=None,
scoring='accuracy', verbose=0)";137,585;0,319358
D:\Programme\Anaconda\Scripts>ipython.exe D:\09-Py\ExecFeatParaOpt.py
### Start of Main Programm for Feature Parameter Optimisation ###
### Start: Exportation of images from DB ###
### Done: Exportation of Images from DB ###
### Optimisation - Feature:SURF Parameter:Cluster from:50 to:200 in #calc:4 with
CV:True ###
### Start: Feautre Optimisation ###
### Start: FeatureExtraction Nr:1 from:4 with:Cluster=50.0 ###
SURF: Keypoints Calculation
SURF: 25% of Images processed (Keypoints)
SURF: 50% of Images processed (Keypoints)
SURF: 75% of Images processed (Keypoints)
SURF: Length of Descriptors: 5546033
SURF: Start filling descriptors
SURF: Shape of Descriptors: (5546033L, 64L)
Begin of SURFSIFTHisto
SURF: Calculation of Dictonary with 50 Clusters
SURF: Assign words from Dictonary to each Image
SURF25% of Images processed (Assignments)
SURF50% of Images processed (Assignments)
SURF75% of Images processed (Assignments)
### Done: FeatureExtraction Nr:1 from:4 ###
### Start: Classification Nr:1 from:4 ###
D:\Programme\Anaconda\lib\site-packages\sklearn\cross_validation.py:417: Warning
: The least populated class in y has only 4 members, which is too few. The minim
um number of labels for any class cannot be less than n_folds=5.
% (min_labels, self.n_folds)), Warning)
### Done: Classification Nr:1 from:4 ###
### Start: FeatureExtraction Nr:2 from:4 with:Cluster=100.0 ###
Begin of SURFSIFTHisto
SURF: Calculation of Dictonary with 100 Clusters
SURF: Assign words from Dictonary to each Image
SURF25% of Images processed (Assignments)
SURF50% of Images processed (Assignments)
SURF75% of Images processed (Assignments)
### Done: FeatureExtraction Nr:2 from:4 ###
### Start: Classification Nr:2 from:4 ###
### Done: Classification Nr:2 from:4 ###
### Start: FeatureExtraction Nr:3 from:4 with:Cluster=150.0 ###
Begin of SURFSIFTHisto
SURF: Calculation of Dictonary with 150 Clusters
SURF: Assign words from Dictonary to each Image
SURF25% of Images processed (Assignments)
SURF50% of Images processed (Assignments)
SURF75% of Images processed (Assignments)
### Done: FeatureExtraction Nr:3 from:4 ###
### Start: Classification Nr:3 from:4 ###
### Done: Classification Nr:3 from:4 ###
### Start: FeatureExtraction Nr:4 from:4 with:Cluster=200.0 ###
Begin of SURFSIFTHisto
SURF: Calculation of Dictonary with 200 Clusters
SURF: Assign words from Dictonary to each Image
SURF25% of Images processed (Assignments)
SURF50% of Images processed (Assignments)
SURF75% of Images processed (Assignments)
### Done: FeatureExtraction Nr:4 from:4 ###
### Start: Classification Nr:4 from:4 ###
### Done: Classification Nr:4 from:4 ###
### Done: Feautre Optimisation ###
### Start: Exporting to CSV ###
### Done: Exporting to CSV ###
Results/Results-FeatOpt-SURF/ScoreClassificationTime.png

122 KiB

Results/Results-FeatOpt-SURF/ScoreFeatExtractionTime.png

126 KiB

Results/Results-FeatOpt-SURF/ScoreTotalTime.png

130 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment