Skip to content
Snippets Groups Projects
Commit a723be1d authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Cleared metrics

parent b2a327fe
Branches
Tags
No related merge requests found
Pipeline #4092 passed
Showing
with 41 additions and 376 deletions
......@@ -25,11 +25,7 @@ def score(y_true, y_pred, multiclass=False, **kwargs):
Returns:
Weighted accuracy score for y_true, y_pred"""
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
score = metric(y_true, y_pred, sample_weight=sample_weight)
score = metric(y_true, y_pred, **kwargs)
return score
......@@ -39,19 +35,10 @@ def get_scorer(**kwargs):
Returns:
A weighted sklearn scorer for accuracy"""
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
return make_scorer(metric, greater_is_better=True,
sample_weight=sample_weight)
**kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
config_string = "Accuracy score using " + str(
sample_weight) + " as sample_weights (higher is better)"
config_string = "Accuracy score using {}, (higher is better)".format(kwargs)
return config_string
......@@ -14,75 +14,15 @@ __author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=True, **kwargs):
try:
sample_weight = kwargs["0"]
except:
sample_weight = None
try:
labels = kwargs["1"]
except:
labels = None
try:
pos_label = kwargs["2"]
except:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
if multiclass:
average = "micro"
else:
average = "micro"
score = metric(y_true, y_pred, sample_weight=sample_weight, labels=labels,
pos_label=pos_label, average=average)
def score(y_true, y_pred, multiclass=True, average='micro', **kwargs):
score = metric(y_true, y_pred, average=average, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except:
average = "micro"
return make_scorer(metric, greater_is_better=True,
sample_weight=sample_weight, labels=labels,
pos_label=pos_label, average=average)
def get_scorer(average="micro", **kwargs):
return make_scorer(metric, greater_is_better=True, average=average, **kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
average = "micro"
config_string = "F1 score using " + str(
sample_weight) + " as sample_weights, " + str(
labels) + " as labels, " + str(
pos_label) \
+ " as pos_label, " + average + " as average (higher is better)"
def get_config(average="micro", **kwargs, ):
config_string = "F1 score using average: {}, {} (higher is better)".format(average, kwargs)
return config_string
......@@ -10,86 +10,16 @@ __author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=True, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
beta = kwargs["1"]
except Exception:
beta = 10.0
try:
labels = kwargs["2"]
except Exception:
labels = None
try:
pos_label = kwargs["3"]
except Exception:
pos_label = 1
try:
average = kwargs["4"]
except Exception:
if multiclass:
average = "micro"
else:
average = "binary"
score = metric(y_true, y_pred, beta, sample_weight=sample_weight,
labels=labels, pos_label=pos_label,
average=average)
def score(y_true, y_pred, beta=2.0, average="micro", **kwargs):
score = metric(y_true, y_pred, beta=beta, average=average, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
beta = kwargs["1"]
except Exception:
beta = 1.0
try:
labels = kwargs["2"]
except Exception:
labels = None
try:
pos_label = kwargs["3"]
except Exception:
pos_label = 1
try:
average = kwargs["4"]
except Exception:
average = "micro"
def get_scorer(beta=2.0, average="micro", **kwargs):
return make_scorer(metric, greater_is_better=True, beta=beta,
sample_weight=sample_weight, labels=labels,
pos_label=pos_label, average=average)
average=average, **kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
beta = kwargs["1"]
except Exception:
beta = 1.0
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
average = "binary"
config_string = "F-beta score using " + str(
sample_weight) + " as sample_weights, " + str(
labels) + " as labels, " + str(pos_label) \
+ " as pos_label, " + average + " as average, " + str(
beta) + " as beta (higher is better)"
def get_config(beta=2.0, average="micro", **kwargs):
config_string = "F-beta score using beta: {}, average: {}, {} (higher is better)".format(beta, average, kwargs)
return config_string
......@@ -10,27 +10,14 @@ __status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
classes = kwargs["0"]
except Exception:
classes = None
score = metric(y_true, y_pred)
score = metric(y_true, y_pred, **kwargs)
return score
def get_scorer(**kwargs):
try:
classes = kwargs["0"]
except Exception:
classes = None
return make_scorer(metric, greater_is_better=False, classes=classes)
return make_scorer(metric, greater_is_better=False, **kwargs)
def get_config(**kwargs):
try:
classes = kwargs["0"]
except Exception:
classes = None
config_string = "Hamming loss using " + str(
classes) + " as classes (lower is better)"
config_string = "Hamming loss using {} (lower is better)".format(kwargs)
return config_string
......@@ -10,28 +10,15 @@ __status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
score = metric(y_true, y_pred, sample_weight=sample_weight)
score = metric(y_true, y_pred, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
return make_scorer(metric, greater_is_better=True,
sample_weight=sample_weight)
**kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
config_string = "Jaccard_similarity score using " + str(
sample_weight) + " as sample_weights (higher is better)"
config_string = "Jaccard_similarity score using {} (higher is better)".format(kwargs)
return config_string
......@@ -10,41 +10,15 @@ __status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
eps = kwargs["1"]
except Exception:
eps = 1e-15
score = metric(y_true, y_pred, sample_weight=sample_weight, eps=eps)
score = metric(y_true, y_pred, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
eps = kwargs["1"]
except Exception:
eps = 1e-15
return make_scorer(metric, greater_is_better=False,
sample_weight=sample_weight, eps=eps)
**kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
eps = kwargs["1"]
except Exception:
eps = 1e-15
config_string = "Log loss using " + str(
sample_weight) + " as sample_weights, " + str(
eps) + " as eps (lower is better)"
config_string = "Log loss using {} (lower is better)".format(kwargs)
return config_string
......@@ -7,73 +7,16 @@ warnings.warn("the precision_score module is deprecated", DeprecationWarning,
__author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
if multiclass:
average = "micro"
else:
average = "binary"
score = metric(y_true, y_pred, sample_weight=sample_weight, labels=labels,
pos_label=pos_label, average=average)
def score(y_true, y_pred, average='micro', multiclass=False, **kwargs):
score = metric(y_true, y_pred, average=average, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
average = "binary"
def get_scorer(average='micro', **kwargs):
return make_scorer(metric, greater_is_better=True,
sample_weight=sample_weight, labels=labels,
pos_label=pos_label,
average=average)
average=average, **kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except:
average = "binary"
config_string = "Precision score using " + str(
sample_weight) + " as sample_weights, " + str(
labels) + " as labels, " + str(pos_label) \
+ " as pos_label, " + average + " as average (higher is better)"
def get_config(average='micro', **kwargs):
config_string = "Precision score using average: {}, {} (higher is better)".format(average, kwargs)
return config_string
......@@ -9,74 +9,16 @@ __author__ = "Baptiste Bauvin"
__status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
if multiclass:
average = "micro"
else:
average = "binary"
score = metric(y_true, y_pred, sample_weight=sample_weight, labels=labels,
pos_label=pos_label, average=average)
def score(y_true, y_pred, average='micro', **kwargs):
score = metric(y_true, y_pred, average=average, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
average = "binary"
def get_scorer(average='micro', **kwargs):
return make_scorer(metric, greater_is_better=True,
sample_weight=sample_weight, labels=labels,
pos_label=pos_label,
average=average)
average=average, **kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
try:
labels = kwargs["1"]
except Exception:
labels = None
try:
pos_label = kwargs["2"]
except Exception:
pos_label = 1
try:
average = kwargs["3"]
except Exception:
average = "binary"
configString = "Recall score using " + str(
sample_weight) + " as sample_weights, " + str(
labels) + " as labels, " + str(pos_label) \
+ " as pos_label, " + average + "as average (higher is " \
"better) "
def get_config(average="micro", **kwargs):
configString = "Recall score using average: {}, {} (higher is better)".format(average, kwargs)
return configString
......@@ -11,17 +11,6 @@ __status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception :
sample_weight = None
try:
average = kwargs["1"]
except Exception:
if multiclass:
average = "micro"
else:
average = None
if multiclass:
mlb = MultiLabelBinarizer()
y_true = mlb.fit_transform([(label) for label in y_true])
......
......@@ -11,28 +11,15 @@ __status__ = "Prototype" # Production, Development, Prototype
def score(y_true, y_pred, multiclass=False, **kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
score = metric(y_true, y_pred, sample_weight=sample_weight)
score = metric(y_true, y_pred, **kwargs)
return score
def get_scorer(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
return make_scorer(metric, greater_is_better=False,
sample_weight=sample_weight)
**kwargs)
def get_config(**kwargs):
try:
sample_weight = kwargs["0"]
except Exception:
sample_weight = None
configString = "Zero_one loss using " + str(
sample_weight) + " as sample_weights (lower is better)"
configString = "Zero_one loss using {} (lower is better)".format(kwargs)
return configString
......@@ -14,8 +14,7 @@ class Test_genTestFoldsPreds(unittest.TestCase):
cls.random_state = np.random.RandomState(42)
cls.X_train = cls.random_state.random_sample((31, 10))
cls.y_train = np.ones(31, dtype=int)
cls.KFolds = StratifiedKFold(n_splits=3, random_state=cls.random_state,
shuffle=True)
cls.KFolds = StratifiedKFold(n_splits=3,)
cls.estimator = DecisionTreeClassifier(max_depth=1)
......@@ -30,5 +29,5 @@ class Test_genTestFoldsPreds(unittest.TestCase):
cls.estimator)
cls.assertEqual(testFoldsPreds.shape, (3, 10))
np.testing.assert_array_equal(testFoldsPreds[0], np.array(
[ 1, 1, 1, 1, -1, -1, 1, -1, 1, 1]))
[ 1, 1, -1, -1, 1, 1, -1, 1, -1, 1]))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment