Skip to content
Snippets Groups Projects
Commit 7a959391 authored by bbauvin's avatar bbauvin
Browse files

modified gridsearch name for all monoview classifiers

parent f7d0a4a0
Branches
Tags
No related merge requests found
......@@ -32,7 +32,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, metric=["accuracy_score", None], nIter=30, nbCores=1):
def randomizedSearch(X_train, y_train, nbFolds=4, metric=["accuracy_score", None], nIter=30, nbCores=1):
pipeline = Pipeline([('classifier', AdaBoostClassifier())])
param= {"classifier__n_estimators": randint(1, 15),
......
......@@ -28,7 +28,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30 ):
def randomizedSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30 ):
pipeline_KNN = Pipeline([('classifier', KNeighborsClassifier())])
param_KNN = {"classifier__n_neighbors": randint(1, 50)}
metricModule = getattr(Metrics, metric[0])
......
......@@ -32,7 +32,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
def randomizedSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
pipeline_rf = Pipeline([('classifier', RandomForestClassifier())])
param_rf = {"classifier__n_estimators": randint(1, 30),
"classifier__max_depth":randint(1, 30)}
......
......@@ -60,7 +60,7 @@ def getKWARGS(kwargsList):
def gridSearch(X_train, y_train, nbFolds=4, metric=["accuracy_score", None], nIter=30, nbCores=1):
def randomizedSearch(X_train, y_train, nbFolds=4, metric=["accuracy_score", None], nIter=30, nbCores=1):
metricModule = getattr(Metrics, metric[0])
if metric[1]!=None:
......
......@@ -37,7 +37,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
def randomizedSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
pipeline_SGD = Pipeline([('classifier', SGDClassifier())])
losses = ['log', 'modified_huber']
penalties = ["l1", "l2", "elasticnet"]
......
......@@ -28,7 +28,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
def randomizedSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear", max_iter=1000))])
param_SVMLinear = {"classifier__C":randint(1, 10000)}
metricModule = getattr(Metrics, metric[0])
......
......@@ -31,7 +31,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
def randomizedSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
pipeline_SVMPoly = Pipeline([('classifier', SVC(kernel="poly", max_iter=1000))])
param_SVMPoly = {"classifier__C": randint(1, 10000), "classifier__degree":randint(1, 30)}
metricModule = getattr(Metrics, metric[0])
......
......@@ -29,7 +29,7 @@ def getKWARGS(kwargsList):
return kwargsDict
def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
def randomizedSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
pipeline_SVMRBF = Pipeline([('classifier', SVC(kernel="rbf", max_iter=1000))])
param_SVMRBF = {"classifier__C": randint(1, 10000)}
metricModule = getattr(Metrics, metric[0])
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment