Skip to content
Snippets Groups Projects
Commit 62dd7946 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Merge branch 'develop' into private_algos

parents 9b63706d bbfd5353
No related branches found
No related tags found
No related merge requests found
...@@ -215,7 +215,7 @@ def get_hyper_params(classifier_module, search_method, classifier_module_name, ...@@ -215,7 +215,7 @@ def get_hyper_params(classifier_module, search_method, classifier_module_name,
random_state=random_state, random_state=random_state,
framework="monoview", n_jobs=nb_cores, framework="monoview", n_jobs=nb_cores,
**hps_kwargs) **hps_kwargs)
hps.fit(X_train, y_train, **kwargs[classifier_module_name]) hps.fit(X_train, y_train)
cl_kwargs = hps.get_best_params() cl_kwargs = hps.get_best_params()
hps.gen_report(output_file_name) hps.gen_report(output_file_name)
logging.info("Done:\t " + search_method + " best settings") logging.info("Done:\t " + search_method + " best settings")
......
...@@ -265,9 +265,9 @@ def exec_multiview(directory, dataset_var, name, classification_indices, ...@@ -265,9 +265,9 @@ def exec_multiview(directory, dataset_var, name, classification_indices,
classifier_module = getattr(multiview_classifiers, cl_type) classifier_module = getattr(multiview_classifiers, cl_type)
classifier_name = classifier_module.classifier_class_name classifier_name = classifier_module.classifier_class_name
# classifierClass = getattr(classifierModule, CL_type + "Class") # classifierClass = getattr(classifierModule, CL_type + "Class")
logging.debug("Done:\t Getting classifiers modules") logging.info("Done:\t Getting classifiers modules")
logging.debug("Start:\t Optimizing hyperparameters") logging.info("Start:\t Optimizing hyperparameters")
hps_beg = time.monotonic() hps_beg = time.monotonic()
if hps_method != "None": if hps_method != "None":
hps_method_class = getattr(hyper_parameter_search, hps_method) hps_method_class = getattr(hyper_parameter_search, hps_method)
...@@ -298,16 +298,16 @@ def exec_multiview(directory, dataset_var, name, classification_indices, ...@@ -298,16 +298,16 @@ def exec_multiview(directory, dataset_var, name, classification_indices,
**classifier_config), **classifier_config),
random_state, multiview=True, random_state, multiview=True,
y=dataset_var.get_labels()) y=dataset_var.get_labels())
logging.debug("Done:\t Optimizing hyperparameters") logging.info("Done:\t Optimizing hyperparameters")
logging.debug("Start:\t Fitting classifier") logging.info("Start:\t Fitting classifier")
fit_beg = time.monotonic() fit_beg = time.monotonic()
classifier.fit(dataset_var, dataset_var.get_labels(), classifier.fit(dataset_var, dataset_var.get_labels(),
train_indices=learning_indices, train_indices=learning_indices,
view_indices=views_indices) view_indices=views_indices)
fit_duration = time.monotonic() - fit_beg fit_duration = time.monotonic() - fit_beg
logging.debug("Done:\t Fitting classifier") logging.info("Done:\t Fitting classifier")
logging.debug("Start:\t Predicting") logging.info("Start:\t Predicting")
train_pred = classifier.predict(dataset_var, train_pred = classifier.predict(dataset_var,
sample_indices=learning_indices, sample_indices=learning_indices,
view_indices=views_indices) view_indices=views_indices)
...@@ -349,10 +349,10 @@ def exec_multiview(directory, dataset_var, name, classification_indices, ...@@ -349,10 +349,10 @@ def exec_multiview(directory, dataset_var, name, classification_indices,
confusion_matrix = result_analyzer.analyze() confusion_matrix = result_analyzer.analyze()
logging.info("Done:\t Result Analysis for " + cl_type) logging.info("Done:\t Result Analysis for " + cl_type)
logging.debug("Start:\t Saving preds") logging.info("Start:\t Saving preds")
save_results(string_analysis, images_analysis, output_file_name, save_results(string_analysis, images_analysis, output_file_name,
confusion_matrix) confusion_matrix)
logging.debug("Start:\t Saving preds") logging.info("Start:\t Saving preds")
return MultiviewResult(cl_type, classifier_config, metrics_scores, return MultiviewResult(cl_type, classifier_config, metrics_scores,
full_pred, hps_duration, fit_duration, full_pred, hps_duration, fit_duration,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment