Skip to content
Snippets Groups Projects
Commit 46e8c8c2 authored by bbauvin's avatar bbauvin
Browse files

Simple test for metrics scores

parent 2dcc9211
Branches
No related tags found
No related merge requests found
language: python language: python
python: python:
- 2.7 - 2.7
- 3.6 - 3.5
addons: addons:
apt: apt:
packages: packages:
...@@ -11,7 +11,7 @@ addons: ...@@ -11,7 +11,7 @@ addons:
install: install:
- pip install -U pip pip-tools - pip install -U pip pip-tools
- pip install numpy scipy scikit-learn matplotlib logging joblib argparse h5py - pip install numpy scipy scikit-learn matplotlib logging joblib argparse h5py
- git clone https://github.com/aldro61/pyscm.git /tmp/pyscm && cd /tmp/pyscm/ && python setup.py install - git clone https://github.com/aldro61/pyscm.git /tmp/pyscm && cd /tmp/pyscm/ && python setup.py install && cd ~/babau1/multiview-machine-learning-omis
script: script:
- python -m unittest discover - python -m unittest discover
......
...@@ -2,6 +2,7 @@ import unittest ...@@ -2,6 +2,7 @@ import unittest
import argparse import argparse
import os import os
import numpy as np import numpy as np
from sklearn.metrics import accuracy_score
from ..MonoMultiViewClassifiers import ExecClassif from ..MonoMultiViewClassifiers import ExecClassif
...@@ -199,6 +200,23 @@ class Test_analyzeMulticlass(unittest.TestCase): ...@@ -199,6 +200,23 @@ class Test_analyzeMulticlass(unittest.TestCase):
multiclassResults = ExecClassif.analyzeMulticlass(cls.results, cls.statsIter, cls.nbExample, cls.nbLabels, cls.true_labels, [["accuracy_score"]]) multiclassResults = ExecClassif.analyzeMulticlass(cls.results, cls.statsIter, cls.nbExample, cls.nbLabels, cls.true_labels, [["accuracy_score"]])
np.testing.assert_array_equal(multiclassResults[1]["chicken_is_heaven"]["labels"], cls.true_labels) np.testing.assert_array_equal(multiclassResults[1]["chicken_is_heaven"]["labels"], cls.true_labels)
class Test_genMetricsScores(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.multiclass_labels = np.array([0,1,2,3,4,5,2,1,3])
cls.multiclassResults = [{"chicken_is_heaven":
{"labels": cls.multiclass_labels}}]
cls.true_labels = np.array([0,2,2,3,4,5,1,3,2])
cls.metrics = [["accuracy_score"]]
cls.score_to_get = accuracy_score(cls.true_labels, cls.multiclass_labels)
def test_simple(cls):
multiclassResults = ExecClassif.genMetricsScores(cls.multiclassResults, cls.true_labels, cls.metrics)
cls.assertEqual(cls.score_to_get, multiclassResults[0]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
# #
# class Essai(unittest.TestCase): # class Essai(unittest.TestCase):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment