Skip to content
Snippets Groups Projects
Commit 3c2a2df3 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Rmd old results"

parent f423d881
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 10508 deletions
2020-04-06 15:43:32,291 DEBUG: Start: Initializing monoview classifiers arguments
2020-04-06 15:43:32,291 DEBUG: Done: Initializing monoview classifiers arguments
2020-04-06 15:43:32,292 DEBUG: Start: Initializing monoview classifiers arguments
2020-04-06 15:43:32,292 DEBUG: Done: Initializing monoview classifiers arguments
2020-04-06 15:43:32,292 DEBUG: Start: Executing all the needed benchmarks
2020-04-06 15:43:32,292 DEBUG: Start: Benchmark initialization
2020-04-06 15:43:32,309 DEBUG: Done: Benchmark initialization
2020-04-06 15:43:32,309 DEBUG: Start: monoview benchmark
2020-04-06 15:43:32,316 DEBUG: Start: Loading data
2020-04-06 15:43:32,316 DEBUG: Done: Loading data
2020-04-06 15:43:32,316 DEBUG: Info: Classification - Database:digits View:digit_col_grad_0 train ratio:0.7495826377295493, CrossValidation k-folds: 2, cores:1, algorithm : decision_tree
2020-04-06 15:43:32,317 DEBUG: Start: Determine Train/Test split
2020-04-06 15:43:32,317 DEBUG: Info: Shape X_train:(1347, 64), Length of y_train:1347
2020-04-06 15:43:32,317 DEBUG: Info: Shape X_test:(450, 64), Length of y_test:450
2020-04-06 15:43:32,317 DEBUG: Done: Determine Train/Test split
2020-04-06 15:43:32,317 DEBUG: Start: Generate classifier args
2020-04-06 15:43:32,317 DEBUG: Done: Generate classifier args
2020-04-06 15:43:32,317 DEBUG: Start: Training
2020-04-06 15:43:32,327 DEBUG: Done: Training
2020-04-06 15:43:32,328 DEBUG: Start: Predicting
2020-04-06 15:43:32,329 DEBUG: Done: Predicting
2020-04-06 15:43:32,329 DEBUG: Info: Duration for training and predicting: 0.012481748999562114[s]
2020-04-06 15:43:32,329 DEBUG: Start: Getting results
2020-04-06 15:43:32,487 DEBUG: Done: Getting results
2020-04-06 15:43:32,487 DEBUG: Start: Saving preds
2020-04-06 15:43:32,488 INFO: Classification on digits for digit_col_grad_0 with decision_tree.
Database configuration :
- Database name : digits
- View name : digit_col_grad_0 View shape : (1797, 64)
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- DecisionTree with max_depth : 3, criterion : gini, splitter : best, random_state : <mtrand.RandomState object at 0x7f9b39ee4fc0>
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.4929472902746845
- Score on test : 0.47555555555555556
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.4929472902746845
- Score on test : 0.47555555555555556
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 41 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 4 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 14 │ 4 │ 2 │ 26 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 1 │ 0 │ 0 │ 0 │ 0 │ 9 │ 1 │ 2 │ 31 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 0 │ 0 │ 0 │ 0 │ 2 │ 0 │ 4 │ 39 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 1 │ 0 │ 0 │ 0 │ 0 │ 2 │ 6 │ 5 │ 31 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 0 │ 0 │ 0 │ 0 │ 42 │ 0 │ 0 │ 4 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 0 │ 0 │ 0 │ 0 │ 3 │ 40 │ 0 │ 2 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 0 │ 0 │ 0 │ 0 │ 2 │ 1 │ 40 │ 2 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 5 │ 36 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 2 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 4 │ 24 │ 15 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
First featrue :
36 <= 0.5
Feature importances :
- Feature index : 21, feature importance : 0.26539503976060225
- Feature index : 36, feature importance : 0.22449217367674237
- Feature index : 42, feature importance : 0.20106225004356684
- Feature index : 60, feature importance : 0.17511746004319367
- Feature index : 28, feature importance : 0.13393307647589495
2020-04-06 15:43:32,494 INFO: Done: Saving results
2020-04-06 15:43:32,498 DEBUG: Start: Loading data
2020-04-06 15:43:32,498 DEBUG: Done: Loading data
2020-04-06 15:43:32,498 DEBUG: Info: Classification - Database:digits View:digit_col_grad_1 train ratio:0.7495826377295493, CrossValidation k-folds: 2, cores:1, algorithm : decision_tree
2020-04-06 15:43:32,498 DEBUG: Start: Determine Train/Test split
2020-04-06 15:43:32,498 DEBUG: Info: Shape X_train:(1347, 64), Length of y_train:1347
2020-04-06 15:43:32,498 DEBUG: Info: Shape X_test:(450, 64), Length of y_test:450
2020-04-06 15:43:32,498 DEBUG: Done: Determine Train/Test split
2020-04-06 15:43:32,498 DEBUG: Start: Generate classifier args
2020-04-06 15:43:32,498 DEBUG: Done: Generate classifier args
2020-04-06 15:43:32,498 DEBUG: Start: Training
2020-04-06 15:43:32,506 DEBUG: Done: Training
2020-04-06 15:43:32,506 DEBUG: Start: Predicting
2020-04-06 15:43:32,507 DEBUG: Done: Predicting
2020-04-06 15:43:32,507 DEBUG: Info: Duration for training and predicting: 0.009176647999993293[s]
2020-04-06 15:43:32,507 DEBUG: Start: Getting results
2020-04-06 15:43:32,678 DEBUG: Done: Getting results
2020-04-06 15:43:32,678 DEBUG: Start: Saving preds
2020-04-06 15:43:32,678 INFO: Classification on digits for digit_col_grad_1 with decision_tree.
Database configuration :
- Database name : digits
- View name : digit_col_grad_1 View shape : (1797, 64)
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- DecisionTree with max_depth : 3, criterion : gini, splitter : best, random_state : <mtrand.RandomState object at 0x7f9b39ee4fc0>
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.5382331106161841
- Score on test : 0.5
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.5382331106161841
- Score on test : 0.5
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 31 │ 4 │ 1 │ 0 │ 2 │ 0 │ 0 │ 2 │ 0 │ 5 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 40 │ 4 │ 0 │ 0 │ 0 │ 1 │ 1 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 0 │ 5 │ 39 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 2 │ 37 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 6 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 0 │ 9 │ 0 │ 0 │ 32 │ 0 │ 0 │ 2 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 3 │ 0 │ 0 │ 0 │ 25 │ 2 │ 2 │ 0 │ 14 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 39 │ 0 │ 0 │ 0 │ 0 │ 4 │ 0 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 4 │ 3 │ 0 │ 2 │ 0 │ 1 │ 35 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 16 │ 25 │ 0 │ 0 │ 0 │ 2 │ 0 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 2 │ 10 │ 13 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 19 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
First featrue :
46 <= -0.25
Feature importances :
- Feature index : 18, feature importance : 0.33862488179885464
- Feature index : 46, feature importance : 0.17815685839779588
- Feature index : 52, feature importance : 0.16841359350523372
- Feature index : 13, feature importance : 0.1600495585447605
- Feature index : 36, feature importance : 0.12766430531260284
- Feature index : 50, feature importance : 0.027090802440752286
2020-04-06 15:43:32,685 INFO: Done: Saving results
2020-04-06 15:43:32,686 DEBUG: Start: Loading data
2020-04-06 15:43:32,687 DEBUG: Done: Loading data
2020-04-06 15:43:32,687 DEBUG: Info: Classification - Database:digits View:digit_col_grad_2 train ratio:0.7495826377295493, CrossValidation k-folds: 2, cores:1, algorithm : decision_tree
2020-04-06 15:43:32,687 DEBUG: Start: Determine Train/Test split
2020-04-06 15:43:32,687 DEBUG: Info: Shape X_train:(1347, 64), Length of y_train:1347
2020-04-06 15:43:32,687 DEBUG: Info: Shape X_test:(450, 64), Length of y_test:450
2020-04-06 15:43:32,687 DEBUG: Done: Determine Train/Test split
2020-04-06 15:43:32,687 DEBUG: Start: Generate classifier args
2020-04-06 15:43:32,687 DEBUG: Done: Generate classifier args
2020-04-06 15:43:32,687 DEBUG: Start: Training
2020-04-06 15:43:32,695 DEBUG: Done: Training
2020-04-06 15:43:32,695 DEBUG: Start: Predicting
2020-04-06 15:43:32,696 DEBUG: Done: Predicting
2020-04-06 15:43:32,696 DEBUG: Info: Duration for training and predicting: 0.009334087000752334[s]
2020-04-06 15:43:32,696 DEBUG: Start: Getting results
2020-04-06 15:43:32,799 DEBUG: Done: Getting results
2020-04-06 15:43:32,799 DEBUG: Start: Saving preds
2020-04-06 15:43:32,799 INFO: Classification on digits for digit_col_grad_2 with decision_tree.
Database configuration :
- Database name : digits
- View name : digit_col_grad_2 View shape : (1797, 64)
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- DecisionTree with max_depth : 3, criterion : gini, splitter : best, random_state : <mtrand.RandomState object at 0x7f9b39ee4fc0>
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.5011135857461024
- Score on test : 0.4822222222222222
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.5011135857461024
- Score on test : 0.4822222222222222
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 43 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 8 │ 10 │ 23 │ 0 │ 5 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 10 │ 34 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 1 │ 5 │ 0 │ 39 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 0 │ 0 │ 0 │ 0 │ 22 │ 3 │ 0 │ 17 │ 0 │ 3 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 0 │ 0 │ 0 │ 0 │ 35 │ 4 │ 0 │ 0 │ 7 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 0 │ 0 │ 0 │ 0 │ 2 │ 41 │ 2 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 2 │ 41 │ 0 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 32 │ 0 │ 10 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 10 │ 0 │ 35 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
First featrue :
29 <= 0.25
Feature importances :
- Feature index : 29, feature importance : 0.21981782251685447
- Feature index : 60, feature importance : 0.19832958949850743
- Feature index : 22, feature importance : 0.19525752565844157
- Feature index : 14, feature importance : 0.1690634685520564
- Feature index : 42, feature importance : 0.15875139048481657
- Feature index : 35, feature importance : 0.041528264543039574
- Feature index : 7, feature importance : 0.01725193874628402
2020-04-06 15:43:32,806 INFO: Done: Saving results
2020-04-06 15:43:32,806 DEBUG: Done: monoview benchmark
2020-04-06 15:43:32,806 DEBUG: Start: multiview arguments initialization
2020-04-06 15:43:32,806 DEBUG: Done: multiview arguments initialization
2020-04-06 15:43:32,806 DEBUG: Start: multiview benchmark
2020-04-06 15:43:32,806 DEBUG: Start: Initialize constants
2020-04-06 15:43:32,806 INFO: Info : Classification - Database : digits ; Views : digit_col_grad_0, digit_col_grad_1, digit_col_grad_2 ; Algorithm : weighted_linear_early_fusion ; Cores : 1, Train ratio : 0.7495826377295493, CV on 2 folds
2020-04-06 15:43:32,807 INFO: Info: Shape of digit_col_grad_0 :(1797, 64)
2020-04-06 15:43:32,808 INFO: Info: Shape of digit_col_grad_1 :(1797, 64)
2020-04-06 15:43:32,809 INFO: Info: Shape of digit_col_grad_2 :(1797, 64)
2020-04-06 15:43:32,809 DEBUG: Done: Initialize constants
2020-04-06 15:43:32,809 INFO: Info: Extraction duration 0.003537416458129883s
2020-04-06 15:43:32,810 DEBUG: Start: Getting train/test split
2020-04-06 15:43:32,810 DEBUG: Done: Getting train/test split
2020-04-06 15:43:32,810 DEBUG: Start: Getting classifiers modules
2020-04-06 15:43:32,810 DEBUG: Done: Getting classifiers modules
2020-04-06 15:43:32,810 DEBUG: Start: Optimizing hyperparameters
2020-04-06 15:43:32,836 DEBUG: Done: Optimizing hyperparameters
2020-04-06 15:43:32,836 DEBUG: Start: Fitting classifier
2020-04-06 15:43:32,874 DEBUG: Done: Fitting classifier
2020-04-06 15:43:32,874 DEBUG: Start: Predicting
2020-04-06 15:43:32,879 INFO: Done: Pertidcting
2020-04-06 15:43:32,879 INFO: Info: Classification duration 0.003537416458129883s
2020-04-06 15:43:32,879 INFO: Start: Result Analysis for weighted_linear_early_fusion
2020-04-06 15:43:32,894 INFO: Done: Result Analysis for weighted_linear_early_fusion
2020-04-06 15:43:32,894 DEBUG: Start: Saving preds
2020-04-06 15:43:32,894 INFO: Multiview classification on digits with early_fusion
Database configuration :
- Database name : digits
- Views : digit_col_grad_0, digit_col_grad_1, digit_col_grad_2
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- WeightedLinearEarlyFusion with monoview_classifier_name : decision_tree, monoview_classifier_config : {'criterion': 'gini', 'max_depth': 6, 'random_state': <mtrand.RandomState object at 0x7f9b39ee4fc0>, 'splitter': 'best'}
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.7980697847067557
- Score on test : 0.76
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.7980697847067557
- Score on test : 0.76
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 42 │ 1 │ 1 │ 1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 37 │ 0 │ 2 │ 2 │ 0 │ 2 │ 0 │ 0 │ 3 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 0 │ 10 │ 33 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 0 │ 3 │ 37 │ 0 │ 2 │ 2 │ 0 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 0 │ 6 │ 0 │ 0 │ 36 │ 0 │ 0 │ 1 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 2 │ 0 │ 0 │ 0 │ 41 │ 1 │ 1 │ 0 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 7 │ 0 │ 0 │ 1 │ 0 │ 36 │ 0 │ 1 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 0 │ 2 │ 0 │ 0 │ 0 │ 0 │ 42 │ 0 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 25 │ 7 │ 0 │ 0 │ 1 │ 2 │ 1 │ 3 │ 4 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 0 │ 3 │ 2 │ 1 │ 0 │ 1 │ 0 │ 3 │ 0 │ 35 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
2020-04-06 15:43:32,894 DEBUG: Start: Saving preds
2020-04-06 15:43:32,894 DEBUG: Start: Initialize constants
2020-04-06 15:43:32,894 INFO: Info : Classification - Database : digits ; Views : digit_col_grad_0, digit_col_grad_1, digit_col_grad_2 ; Algorithm : weighted_linear_late_fusion ; Cores : 1, Train ratio : 0.7495826377295493, CV on 2 folds
2020-04-06 15:43:32,896 INFO: Info: Shape of digit_col_grad_0 :(1797, 64)
2020-04-06 15:43:32,896 INFO: Info: Shape of digit_col_grad_1 :(1797, 64)
2020-04-06 15:43:32,897 INFO: Info: Shape of digit_col_grad_2 :(1797, 64)
2020-04-06 15:43:32,898 DEBUG: Done: Initialize constants
2020-04-06 15:43:32,898 INFO: Info: Extraction duration 0.0033233165740966797s
2020-04-06 15:43:32,898 DEBUG: Start: Getting train/test split
2020-04-06 15:43:32,898 DEBUG: Done: Getting train/test split
2020-04-06 15:43:32,898 DEBUG: Start: Getting classifiers modules
2020-04-06 15:43:32,898 DEBUG: Done: Getting classifiers modules
2020-04-06 15:43:32,898 DEBUG: Start: Optimizing hyperparameters
2020-04-06 15:43:32,915 DEBUG: Done: Optimizing hyperparameters
2020-04-06 15:43:32,915 DEBUG: Start: Fitting classifier
2020-04-06 15:43:33,614 DEBUG: Done: Fitting classifier
2020-04-06 15:43:33,614 DEBUG: Start: Predicting
2020-04-06 15:43:33,852 INFO: Done: Pertidcting
2020-04-06 15:43:33,852 INFO: Info: Classification duration 0.0033233165740966797s
2020-04-06 15:43:33,852 INFO: Start: Result Analysis for weighted_linear_late_fusion
2020-04-06 15:43:33,869 INFO: Done: Result Analysis for weighted_linear_late_fusion
2020-04-06 15:43:33,869 DEBUG: Start: Saving preds
2020-04-06 15:43:33,869 INFO: Multiview classification on digits with weighted_linear_late_fusion
Database configuration :
- Database name : digits
- Views : digit_col_grad_0, digit_col_grad_1, digit_col_grad_2
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- multiclass_adaptation : MultiviewOVOWrapper, WeightedLinearLateFusion with classifiers_names : decision_tree, classifier_configs : {'decision_tree': {'max_depth': 3}}, weights : None, rs : None
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.9896065330363771
- Score on test : 0.9177777777777778
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.9896065330363771
- Score on test : 0.9177777777777778
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 42 │ 0 │ 0 │ 0 │ 2 │ 0 │ 0 │ 0 │ 1 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 42 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 │ 2 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 0 │ 0 │ 41 │ 0 │ 0 │ 0 │ 0 │ 0 │ 3 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 0 │ 2 │ 40 │ 0 │ 0 │ 0 │ 2 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 0 │ 2 │ 0 │ 0 │ 41 │ 0 │ 0 │ 2 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 0 │ 0 │ 0 │ 1 │ 42 │ 0 │ 0 │ 0 │ 3 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 44 │ 0 │ 1 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 │ 43 │ 1 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 2 │ 2 │ 0 │ 0 │ 0 │ 0 │ 2 │ 37 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 1 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 1 │ 1 │ 41 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
Multiclass wrapper is not interpretable yet
2020-04-06 15:43:33,870 DEBUG: Start: Saving preds
2020-04-06 15:43:33,870 DEBUG: Done: multiview benchmark
2020-04-06 15:43:33,871 DEBUG: Start: Analyzing all results
2020-04-06 15:43:34,782 DEBUG: Start: Score graph generation for accuracy_score*
2020-04-06 15:43:35,890 DEBUG: Done: Score graph generation for accuracy_score*
2020-04-06 15:43:35,890 DEBUG: Start: Score graph generation for f1_score
2020-04-06 15:43:36,560 DEBUG: Done: Score graph generation for f1_score
2020-04-06 15:43:36,560 DEBUG: Start: Label analysis figure generation
2020-04-06 15:43:36,593 DEBUG: locator: <matplotlib.ticker.FixedLocator object at 0x7f9afbda3710>
2020-04-06 15:43:36,594 DEBUG: Using fixed locator on colorbar
2020-04-06 15:43:36,595 DEBUG: Setting pcolormesh
2020-04-06 15:43:38,561 DEBUG: Done: Label analysis figures generation
2020-04-06 15:43:39,525 DEBUG: Done: Analyzing all results
2020-04-06 15:43:39,525 DEBUG: Done: Executing all the needed benchmarks
2020-04-06 15:43:39,525 DEBUG: Start: Analyzing predictions
2020-04-06 15:43:39,526 DEBUG: Start: Analyzing all results
2020-04-06 15:43:40,429 DEBUG: Start: Score graph generation for accuracy_score*
2020-04-06 15:43:41,167 DEBUG: Done: Score graph generation for accuracy_score*
2020-04-06 15:43:41,168 DEBUG: Start: Score graph generation for f1_score
2020-04-06 15:43:41,841 DEBUG: Done: Score graph generation for f1_score
2020-04-06 15:43:41,842 DEBUG: Start: Label analysis figure generation
2020-04-06 15:43:41,877 DEBUG: locator: <matplotlib.ticker.FixedLocator object at 0x7f9afb7c4630>
2020-04-06 15:43:41,877 DEBUG: Using fixed locator on colorbar
2020-04-06 15:43:41,879 DEBUG: Setting pcolormesh
2020-04-06 15:43:43,788 DEBUG: Done: Label analysis figures generation
2020-04-06 15:43:44,829 DEBUG: Done: Analyzing all results
2020-04-06 15:43:44,829 DEBUG: Done: Analyzing predictions
add_noise: false
algos_monoview: [decision_tree]
algos_multiview: [weighted_linear_early_fusion, weighted_linear_late_fusion]
classes: null
debug: false
decision_tree: {max_depth: 3}
file_type: .hdf5
full: true
hps_args: {}
hps_iter: 1
hps_kwargs: {equivalent_draws: true, n_iter: 10}
hps_type: None
label: example_0
log: true
metric_princ: accuracy_score
metrics:
accuracy_score: {}
f1_score: {average: micro}
name: [digits]
nb_class: null
nb_cores: 1
nb_folds: 2
nice: 0
noise_std: 0.0
pathf: examples/data/
random_state: 42
res_dir: examples/results/example_0/
split: 0.25
stats_iter: 1
track_tracebacks: true
type: [monoview, multiview]
views: null
weighted_linear_early_fusion:
monoview_classifier_config:
decision_tree: {max_depth: 6}
monoview_classifier_name: decision_tree
weighted_linear_late_fusion:
classifier_configs:
decision_tree: {max_depth: 3}
classifiers_names: decision_tree
4.100000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 4.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.400000000000000000e+01, 4.000000000000000000e+00, 2.000000000000000000e+00, 2.600000000000000000e+01, 0.000000000000000000e+00
1.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 9.000000000000000000e+00, 1.000000000000000000e+00, 2.000000000000000000e+00, 3.100000000000000000e+01, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 4.000000000000000000e+00, 3.900000000000000000e+01, 1.000000000000000000e+00
1.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 6.000000000000000000e+00, 5.000000000000000000e+00, 3.100000000000000000e+01, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 4.200000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 4.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 3.000000000000000000e+00, 4.000000000000000000e+01, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 1.000000000000000000e+00, 4.000000000000000000e+01, 2.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 0.000000000000000000e+00, 5.000000000000000000e+00, 3.600000000000000000e+01, 1.000000000000000000e+00
2.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 4.000000000000000000e+00, 2.400000000000000000e+01, 1.500000000000000000e+01
Classification on digits for digit_col_grad_0 with decision_tree.
Database configuration :
- Database name : digits
- View name : digit_col_grad_0 View shape : (1797, 64)
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- DecisionTree with max_depth : 3, criterion : gini, splitter : best, random_state : <mtrand.RandomState object at 0x7f9b39ee4fc0>
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.4929472902746845
- Score on test : 0.47555555555555556
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.4929472902746845
- Score on test : 0.47555555555555556
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 41 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 4 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 14 │ 4 │ 2 │ 26 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 1 │ 0 │ 0 │ 0 │ 0 │ 9 │ 1 │ 2 │ 31 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 0 │ 0 │ 0 │ 0 │ 2 │ 0 │ 4 │ 39 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 1 │ 0 │ 0 │ 0 │ 0 │ 2 │ 6 │ 5 │ 31 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 0 │ 0 │ 0 │ 0 │ 42 │ 0 │ 0 │ 4 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 0 │ 0 │ 0 │ 0 │ 3 │ 40 │ 0 │ 2 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 0 │ 0 │ 0 │ 0 │ 2 │ 1 │ 40 │ 2 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 5 │ 36 │ 1 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 2 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 4 │ 24 │ 15 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
First featrue :
36 <= 0.5
Feature importances :
- Feature index : 21, feature importance : 0.26539503976060225
- Feature index : 36, feature importance : 0.22449217367674237
- Feature index : 42, feature importance : 0.20106225004356684
- Feature index : 60, feature importance : 0.17511746004319367
- Feature index : 28, feature importance : 0.13393307647589495
1.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
8.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
5.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
6.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
0.000000000000000000e+00
5.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
1.000000000000000000e+00
3.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
9.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
9.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
2.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
8.000000000000000000e+00
5.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
3.100000000000000000e+01, 4.000000000000000000e+00, 1.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 5.000000000000000000e+00
0.000000000000000000e+00, 4.000000000000000000e+01, 4.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 1.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 5.000000000000000000e+00, 3.900000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 2.000000000000000000e+00, 3.700000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 6.000000000000000000e+00
0.000000000000000000e+00, 9.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 3.200000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00
0.000000000000000000e+00, 3.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.500000000000000000e+01, 2.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 1.400000000000000000e+01
0.000000000000000000e+00, 3.900000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 4.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00
0.000000000000000000e+00, 4.000000000000000000e+00, 3.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 3.500000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 1.600000000000000000e+01, 2.500000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00
2.000000000000000000e+00, 1.000000000000000000e+01, 1.300000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 0.000000000000000000e+00, 1.900000000000000000e+01
Classification on digits for digit_col_grad_1 with decision_tree.
Database configuration :
- Database name : digits
- View name : digit_col_grad_1 View shape : (1797, 64)
- Learning Rate : 0.7495826377295493
- Labels used : digit_0, digit_1, digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8, digit_9
- Number of cross validation folds : 2
Classifier configuration :
- DecisionTree with max_depth : 3, criterion : gini, splitter : best, random_state : <mtrand.RandomState object at 0x7f9b39ee4fc0>
- Executed on 1 core(s)
For Accuracy score using {}, (higher is better) :
- Score on train : 0.5382331106161841
- Score on test : 0.5
For F1 score using average: micro, {} (higher is better) :
- Score on train : 0.5382331106161841
- Score on test : 0.5
Test set confusion matrix :
╒═════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╤═══════════╕
│ │ digit_0 │ digit_1 │ digit_2 │ digit_3 │ digit_4 │ digit_5 │ digit_6 │ digit_7 │ digit_8 │ digit_9 │
╞═════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ digit_0 │ 31 │ 4 │ 1 │ 0 │ 2 │ 0 │ 0 │ 2 │ 0 │ 5 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_1 │ 0 │ 40 │ 4 │ 0 │ 0 │ 0 │ 1 │ 1 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_2 │ 0 │ 5 │ 39 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_3 │ 0 │ 2 │ 37 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 6 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_4 │ 0 │ 9 │ 0 │ 0 │ 32 │ 0 │ 0 │ 2 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_5 │ 0 │ 3 │ 0 │ 0 │ 0 │ 25 │ 2 │ 2 │ 0 │ 14 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_6 │ 0 │ 39 │ 0 │ 0 │ 0 │ 0 │ 4 │ 0 │ 0 │ 2 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_7 │ 0 │ 4 │ 3 │ 0 │ 2 │ 0 │ 1 │ 35 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_8 │ 0 │ 16 │ 25 │ 0 │ 0 │ 0 │ 2 │ 0 │ 0 │ 0 │
├─────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤
│ digit_9 │ 2 │ 10 │ 13 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 19 │
╘═════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╧═══════════╛
Classification took 0:00:00
Classifier Interpretation :
First featrue :
46 <= -0.25
Feature importances :
- Feature index : 18, feature importance : 0.33862488179885464
- Feature index : 46, feature importance : 0.17815685839779588
- Feature index : 52, feature importance : 0.16841359350523372
- Feature index : 13, feature importance : 0.1600495585447605
- Feature index : 36, feature importance : 0.12766430531260284
- Feature index : 50, feature importance : 0.027090802440752286
1.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
8.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
5.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
6.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
0.000000000000000000e+00
5.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
1.000000000000000000e+00
3.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
9.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
9.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
4.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
2.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
7.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
3.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
6.000000000000000000e+00
4.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
1.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
2.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
8.000000000000000000e+00
5.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
4.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
4.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
1.000000000000000000e+00
9.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
7.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
9.000000000000000000e+00
6.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
2.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
0.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
3.000000000000000000e+00
5.000000000000000000e+00
9.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
9.000000000000000000e+00
4.000000000000000000e+00
1.000000000000000000e+00
6.000000000000000000e+00
6.000000000000000000e+00
9.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
6.000000000000000000e+00
0.000000000000000000e+00
7.000000000000000000e+00
5.000000000000000000e+00
5.000000000000000000e+00
8.000000000000000000e+00
6.000000000000000000e+00
8.000000000000000000e+00
2.000000000000000000e+00
7.000000000000000000e+00
4.000000000000000000e+00
9.000000000000000000e+00
5.000000000000000000e+00
7.000000000000000000e+00
6.000000000000000000e+00
1.000000000000000000e+00
7.000000000000000000e+00
8.000000000000000000e+00
8.000000000000000000e+00
0.000000000000000000e+00
3.000000000000000000e+00
4.000000000000000000e+00
8.000000000000000000e+00
4.300000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 8.000000000000000000e+00, 1.000000000000000000e+01, 2.300000000000000000e+01, 0.000000000000000000e+00, 5.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+01, 3.400000000000000000e+01, 0.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 1.000000000000000000e+00, 5.000000000000000000e+00, 0.000000000000000000e+00, 3.900000000000000000e+01
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.200000000000000000e+01, 3.000000000000000000e+00, 0.000000000000000000e+00, 1.700000000000000000e+01, 0.000000000000000000e+00, 3.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 3.500000000000000000e+01, 4.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 7.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 2.000000000000000000e+00, 4.100000000000000000e+01, 2.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 2.000000000000000000e+00, 4.100000000000000000e+01, 0.000000000000000000e+00, 1.000000000000000000e+00
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+00, 3.200000000000000000e+01, 0.000000000000000000e+00, 1.000000000000000000e+01
0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 1.000000000000000000e+01, 0.000000000000000000e+00, 3.500000000000000000e+01
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment