This package is used as an easy-to-use platform to estimate different mono- and multi-view classifiers' performance on a multiview dataset.
The main advantage of the platform is that it allows to add and remove a classifier without modifying its core code (the procedure is described thoroughly in this documentation).
"* In the `MonoviewClassifiers` package, you need to add a python module called after your monoview classifier (let's call it MOC for **MO**noview **C**lassifier)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The `MOC.py` file"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this file, you need to add several functions forthe platform to be able to use your classifier, they are alllisted below : "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### `canProbas`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This function is just used to knowif the classifier can predict a probability for each label instead of just predicting the a label."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def canProbas():\n",
" return True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### `fit`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This function returns a fitted sklearn classifier object"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2.0
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
\ No newline at end of file
%% Cell type:markdown id: tags:
# Monoview classifier framework
%% Cell type:markdown id: tags:
## File addition
%% Cell type:markdown id: tags:
* In the `MonoviewClassifiers` package, you need to add a python module called after your monoview classifier (let's call it MOC for **MO**noview **C**lassifier)
%% Cell type:markdown id: tags:
## The `MOC.py` file
%% Cell type:markdown id: tags:
In this file, you need to add several functions forthe platform to be able to use your classifier, they are alllisted below :
%% Cell type:markdown id: tags:
### `canProbas`
%% Cell type:markdown id: tags:
This function is just used to knowif the classifier can predict a probability for each label instead of just predicting the a label.
%% Cell type:code id: tags:
``` python
defcanProbas():
returnTrue
```
%% Cell type:markdown id: tags:
### `fit`
%% Cell type:markdown id: tags:
This function returns a fitted sklearn classifier object