Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Supervised MultiModal Integration Tool
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Baptiste Bauvin
Supervised MultiModal Integration Tool
Commits
23159936
Commit
23159936
authored
6 years ago
by
Baptiste Bauvin
Browse files
Options
Downloads
Patches
Plain Diff
Crue simplification
parent
d26c9f30
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
multiview_platform/MonoMultiViewClassifiers/Monoview/Additions/QarBoostUtils.py
+12
-10
12 additions, 10 deletions
...oMultiViewClassifiers/Monoview/Additions/QarBoostUtils.py
with
12 additions
and
10 deletions
multiview_platform/MonoMultiViewClassifiers/Monoview/Additions/QarBoostUtils.py
+
12
−
10
View file @
23159936
...
...
@@ -66,23 +66,16 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
# Print dynamically the step and the error of the current classifier
print
(
"
{}/{}, eps :{}
"
.
format
(
k
+
2
,
self
.
n_max_iterations
,
self
.
epsilons
[
-
1
]),
end
=
"
\r
"
)
# Find best weak hypothesis given example_weights. Select the one that has the lowest minimum
# C-bound with the previous vote or the one with the best weighted margin
sol
,
new_voter_index
=
self
.
choose_new_voter
(
y_kernel_matrix
,
formatted_y
)
# If the new voter selector could not find one, break the loop
if
type
(
sol
)
==
str
:
self
.
break_cause
=
new_voter_index
#
break
# Append the weak hypothesis.
self
.
append_new_voter
(
new_voter_index
)
# Generate the new weight for the new voter
epsilon
,
r
=
self
.
compute_voter_perf
(
formatted_y
)
if
epsilon
==
0.
or
math
.
log
((
1
-
epsilon
)
/
epsilon
)
==
math
.
inf
:
self
.
chosen_columns_
.
pop
()
self
.
break_cause
=
"
epsilon was too small.
"
...
...
@@ -90,20 +83,20 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
self
.
compute_voter_weight
(
r
,
epsilon
)
# Update the distribution on the examples.
self
.
update_example_weights
(
formatted_y
)
# Update the "previous vote" to prepare for the next iteration
self
.
update_info_containers
(
formatted_y
,
r
,
k
)
self
.
nb_opposed_voters
=
self
.
check_opposed_voters
()
self
.
estimators_generator
.
estimators_
=
self
.
estimators_generator
.
estimators_
[
self
.
chosen_columns_
]
self
.
weights_
=
np
.
array
(
self
.
weights_
)
self
.
weights_
=
np
.
array
(
self
.
weights_
)
self
.
weights_
/=
np
.
sum
(
self
.
weights_
)
formatted_y
[
formatted_y
==
-
1
]
=
0
formatted_y
=
formatted_y
.
reshape
((
m
,))
end
=
time
.
time
()
self
.
train_time
=
end
-
start
return
self
...
...
@@ -123,6 +116,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
return
signs_array
def
update_info_containers
(
self
,
y
,
r
,
k
):
"""
Is used at each iteration to compute and store all the needed quantities for later analysis
"""
self
.
example_weights_
.
append
(
self
.
example_weights
)
self
.
previous_vote
=
np
.
matmul
(
self
.
classification_matrix
[:,
self
.
chosen_columns_
],
...
...
@@ -137,6 +131,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
# self.bounds.append(np.prod(np.sqrt(1-4*np.square(0.5-np.array(self.epsilons)))))
def
compute_voter_weight
(
self
,
r
,
epsilon
):
"""
used to compute the voter
'
s weight according to the specified method (edge or error)
"""
if
self
.
use_r
:
self
.
q
=
0.5
*
math
.
log
((
1
+
r
)
/
(
1
-
r
))
else
:
...
...
@@ -144,6 +139,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
self
.
weights_
.
append
(
self
.
q
)
def
compute_voter_perf
(
self
,
formatted_y
):
"""
Used to computer the performance (error or edge) of the selected voter
"""
epsilon
=
self
.
_compute_epsilon
(
formatted_y
)
self
.
epsilons
.
append
(
epsilon
)
...
...
@@ -151,11 +147,13 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
return
epsilon
,
r
def
append_new_voter
(
self
,
new_voter_index
):
"""
Used to append the voter to the majority vote
"""
self
.
chosen_columns_
.
append
(
new_voter_index
)
self
.
new_voter
=
self
.
classification_matrix
[:,
new_voter_index
].
reshape
(
(
self
.
n_total_examples
,
1
))
def
choose_new_voter
(
self
,
y_kernel_matrix
,
formatted_y
):
"""
Used to chhoose the voter according to the specified criterion (margin or C-Bound
"""
if
self
.
c_bound_choice
:
sol
,
new_voter_index
=
self
.
_find_new_voter
(
y_kernel_matrix
,
formatted_y
)
...
...
@@ -166,6 +164,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
def
init_boosting
(
self
,
m
,
y
,
y_kernel_matrix
):
"""
THis initialization corressponds to the first round of boosting with equal weights for each examples and the voter chosen by it
'
s margin.
"""
self
.
example_weights
=
self
.
_initialize_alphas
(
m
).
reshape
((
m
,
1
))
self
.
previous_margins
.
append
(
np
.
multiply
(
y
,
y
))
...
...
@@ -206,6 +205,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
self
.
bounds
.
append
(
math
.
sqrt
(
1
-
r
**
2
))
def
format_X_y
(
self
,
X
,
y
):
"""
Formats the data : X -the examples- and y -the labels- to be used properly by the algorithm
"""
if
scipy
.
sparse
.
issparse
(
X
):
logging
.
info
(
'
Converting to dense matrix.
'
)
X
=
np
.
array
(
X
.
todense
())
...
...
@@ -215,6 +215,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
return
X
,
y
def
init_hypotheses
(
self
,
X
,
y
):
"""
Inintialization for the hyptotheses used to build the boosted vote
"""
if
self
.
estimators_generator
is
None
:
self
.
estimators_generator
=
StumpsClassifiersGenerator
(
n_stumps_per_attribute
=
self
.
n_stumps
,
self_complemented
=
self
.
self_complemented
)
...
...
@@ -226,6 +227,7 @@ class ColumnGenerationClassifierQar(BaseEstimator, ClassifierMixin, BaseBoost):
return
m
,
n
,
y_kernel_matrix
def
init_info_containers
(
self
):
"""
Initialize the containers that will be collected at each iteration for the analysis
"""
self
.
weights_
=
[]
self
.
chosen_columns_
=
[]
self
.
fobidden_columns
=
[]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment