Skip to content
Snippets Groups Projects
Commit 0714d5d5 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Didi some debug

parent bf72ef35
No related branches found
No related tags found
No related merge requests found
...@@ -16,8 +16,8 @@ class BaseJumboFusion(LateFusionClassifier): ...@@ -16,8 +16,8 @@ class BaseJumboFusion(LateFusionClassifier):
self.distribs += [CustomRandint(1,10)] self.distribs += [CustomRandint(1,10)]
self.nb_monoview_per_view = nb_monoview_per_view self.nb_monoview_per_view = nb_monoview_per_view
def set_params(self, **params): def set_params(self, nb_monoview_per_view=1, **params):
self.nb_monoview_per_view = params["nb_monoview_per_view"] self.nb_monoview_per_view = nb_monoview_per_view
super(BaseJumboFusion, self).set_params(**params) super(BaseJumboFusion, self).set_params(**params)
def predict(self, X, example_indices=None, view_indices=None): def predict(self, X, example_indices=None, view_indices=None):
...@@ -28,7 +28,6 @@ class BaseJumboFusion(LateFusionClassifier): ...@@ -28,7 +28,6 @@ class BaseJumboFusion(LateFusionClassifier):
def fit(self, X, y, train_indices=None, view_indices=None): def fit(self, X, y, train_indices=None, view_indices=None):
train_indices, view_indices = get_examples_views_indices(X, train_indices, view_indices) train_indices, view_indices = get_examples_views_indices(X, train_indices, view_indices)
self.init_classifiers(len(view_indices), nb_monoview_per_view=self.nb_monoview_per_view) self.init_classifiers(len(view_indices), nb_monoview_per_view=self.nb_monoview_per_view)
print(self.classifiers_names, self.nb_monoview_per_view)
self.fit_monoview_estimators(X, y, train_indices=train_indices, view_indices=view_indices) self.fit_monoview_estimators(X, y, train_indices=train_indices, view_indices=view_indices)
monoview_decisions = self.predict_monoview(X, example_indices=train_indices, view_indices=view_indices) monoview_decisions = self.predict_monoview(X, example_indices=train_indices, view_indices=view_indices)
self.aggregation_estimator.fit(monoview_decisions, y[train_indices]) self.aggregation_estimator.fit(monoview_decisions, y[train_indices])
......
from sklearn.svm import SVC from sklearn.svm import SVC
from .additions.jumbo_multiview_utils import BaseJumboFusion from .additions.jumbo_fusion_utils import BaseJumboFusion
from ..monoview.monoview_utils import CustomUniform, CustomRandint from ..monoview.monoview_utils import CustomUniform, CustomRandint
classifier_class_name = "SVMJumboFusion" classifier_class_name = "SVMJumboFusion"
...@@ -17,9 +17,9 @@ class SVMJumboFusion(BaseJumboFusion): ...@@ -17,9 +17,9 @@ class SVMJumboFusion(BaseJumboFusion):
self.distribs += [CustomUniform(), ["rbf", "poly", "linear"], CustomRandint(2, 5)] self.distribs += [CustomUniform(), ["rbf", "poly", "linear"], CustomRandint(2, 5)]
self.aggregation_estimator = SVC(C=C, kernel=kernel, degree=degree) self.aggregation_estimator = SVC(C=C, kernel=kernel, degree=degree)
def set_params(self, **params): def set_params(self, C=1.0, kernel="rbf", degree=1, **params):
super(SVMJumboFusion, self).set_params(**params) super(SVMJumboFusion, self).set_params(**params)
self.aggregation_estimator.set_params(**dict((key, value) for key, value in params.items() if key in ["C", "kernel", "degree"])) self.aggregation_estimator.set_params(C=C, kernel=kernel, degree=degree)
return self return self
......
import unittest
import numpy as np
import multiview_platform.mono_multi_view_classifiers.multiview_classifiers.additions.jumbo_fusion_utils as ju
class FakeDataset():
def __init__(self, views, labels):
self.nb_views = views.shape[0]
self.dataset_length = views.shape[2]
self.views = views
self.labels = labels
def get_v(self, view_index, example_indices):
return self.views[view_index, example_indices]
def get_nb_class(self, example_indices):
return np.unique(self.labels[example_indices])
#TODO
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment