Skip to content
Snippets Groups Projects
Select Git revision
  • 2f2c49c7eeedb474e87d609174008148e9adb1f9
  • master default
  • object
  • develop protected
  • private_algos
  • cuisine
  • SMOTE
  • revert-76c4cca5
  • archive protected
  • no_graphviz
  • 0.0.2
  • 0.0.1
12 results

analyzeResults.py

Blame
  • dctiii.py 4.89 KiB
    # -*- coding: utf-8 -*-
    # ######### COPYRIGHT #########
    # Credits
    # #######
    #
    # Copyright(c) 2015-2018
    # ----------------------
    #
    # * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
    # * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
    #   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
    # * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
    # * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
    #
    # This software is a port from LTFAT 2.1.0 :
    # Copyright (C) 2005-2018 Peter L. Soendergaard <peter@sonderport.dk>.
    #
    # Contributors
    # ------------
    #
    # * Denis Arrivault <contact.dev_AT_lis-lab.fr>
    # * Florent Jaillet <contact.dev_AT_lis-lab.fr>
    #
    # Description
    # -----------
    #
    # ltfatpy is a partial Python port of the
    # `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
    # a MATLAB®/Octave toolbox for working with time-frequency analysis and
    # synthesis.
    #
    # Version
    # -------
    #
    # * ltfatpy version = 1.0.14
    # * LTFAT version = 2.1.0
    #
    # Licence
    # -------
    #
    # This program is free software: you can redistribute it and/or modify
    # it under the terms of the GNU General Public License as published by
    # the Free Software Foundation, either version 3 of the License, or
    # (at your option) any later version.
    #
    # This program is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with this program.  If not, see <http://www.gnu.org/licenses/>.
    #
    # ######### COPYRIGHT #########
    
    
    """This module contains dctIII function
    
    Ported from ltfat_2.1.0/fourier/dctiii.m
    
    .. moduleauthor:: Denis Arrivault
    """
    
    from __future__ import print_function, division
    
    from ltfatpy.comp.comp_dct import comp_dct
    from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
    from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
    from ltfatpy.tools.postpad import postpad
    
    
    def dctiii(f, L=None, dim=None):
        """Discrete Cosine Transform type III
    
        - Usage:
    
            | ``c = dctiii(f)``
            | ``c = dctiii(f,L,dim)``
    
        - Input parameters:
    
        :param numpy.ndarray f: Input data. **f** dtype has to be float64 or
            complex128.
        :param int L: Length of the output vector. Default is the length of
            **f**.
        :param int dim: dimension along which the transformation is applied.
            Default is the first non-singleton dimension.
    
        - Output parameter:
    
        :return: ``c``
        :rtype: numpy.ndarray
    
        ``dctiii(f)`` computes the discrete cosine transform of type III of the
        input signal **f**. If **f** is a matrix then the transformation is applied
        to each column. For N-D arrays, the transformation is applied to the first
        non-singleton dimension.
    
        ``dctiii(f,L)`` zero-pads or truncates **f** to length **L** before doing
        the transformation.
    
        ``dctiii(f,dim=dim)`` or ``dctiii(f,L,dim)`` applies the transformation
        along dimension **dim**.
    
        The transform is real (output is real if input is real) and
        it is orthonormal.
    
        This is the inverse of \|dctii\|.
    
        Let f be a signal of length **L**, let :math:`c=dctiii(f)` and define the
        vector **w** of length **L** by
    
        .. w = [1/sqrt(2) 1 1 1 1 ...1/sqrt(2)]
    
        .. math::
    
            w\\left(n\\right)=\\begin{cases}\\frac{1}{\\sqrt{2}} & \\text{if }n=0
            \\text{ or }n=L-1 \\\ 1 & \\text{otherwise}\\end{cases}
    
        Then
    
        .. math::
    
            c\\left(n+1\\right)=\\sqrt{\\frac{2}{L}}\\sum_{m=0}^{L-1}w\\left(
            m\\right)f\\left(m+1\\right)\\cos\\left(\\frac{\\pi}{L}\\left(
            n+\\frac{1}{2}\\right)m\\right)
    
        - Examples:
    
        The following figures show the first 4 basis functions of the dctiii of
        length 20:
    
        >>> import numpy as np
        >>> # The dctiii is its own adjoint.
        >>> F = dctiii(np.eye(20, dtype=np.float64))
        >>> import matplotlib.pyplot as plt
        >>> plt.close('all')
        >>> fig = plt.figure()
        >>> for ii in range(1,5):
        ...    ax = fig.add_subplot(4,1,ii)
        ...    ax.stem(F[:,ii-1])
        ...
        <Container object of 3 artists>
        <Container object of 3 artists>
        <Container object of 3 artists>
        <Container object of 3 artists>
        >>> plt.show()
    
        .. image:: images/dctiii.png
           :width: 700px
           :alt: dctiii image
           :align: center
        .. seealso::  :func:`~ltfatpy.fourier.dctiv`,
            :func:`~ltfatpy.fourier.dstiii`
    
        - References:
            :cite:`rayi90,wi94`
        """
        (f, L, _, _, dim, permutedsize, order) = assert_sigreshape_pre(f, L, dim)
        if L is not None:
            f = postpad(f, L)
        if L == 1:
            c = f
        else:
            c = comp_dct(f, 3)
        return assert_sigreshape_post(c, dim, permutedsize, order)
    
    if __name__ == '__main__':  # pragma: no cover
        import doctest
        doctest.testmod()