Skip to content
Snippets Groups Projects
Commit e38cc7e4 authored by Akrem Sellami's avatar Akrem Sellami
Browse files

Upload New File

parent 82758a9a
No related branches found
No related tags found
No related merge requests found
"""
Preprocessing of InterTVA resting state fMRI data for the computing of the correlation matrix (voxels/ROIs)
Processing
==========
1 - Importation of resting state fMRI data (from Bastien Cagna)
2 - Preprocessing of BOLD data using SPM 12:
- Proc 1: Slice Timing
- Proc 2: Compute VDM
- Proc 3: Realign and Unwarp
- Proc 4: Coregistration to already coregistred Voice Localizer BOLD image
- Proc 5: Noise regressors estimation with PhysioTapas
3 - Create mask
4 - Model specification: GLM
5 - Use of explicit masks to calculate the GLM in SPM
6 - Model estimation
7 - Check if exist a nan values in nii files
8 - Projection of nii files into gii files on freesurfer6 template
9- Compute the correlation matrix:
- Proc 1: Extract all matrix of gii files
- Proc 2: ROIs averaging
- Proc 3: Correlation Matrix (Voxels/ ROIs)
Softwares
=========
This pipeline use:
* Python 3
* SPM12 toolbox in Matlab 2018
* FSL 5.0 (fslmaths)
* Freesurfer 6
Arguments
=========
List of subjects' number (or ID)
Example
=======
python preprocessing_rsfmri.py 4 5 6
Next step
=========
After running this pipeline on a subject, you can visualize the obtained correlation matrix with: python visualization.py sub-xx
"""
import sys
import numpy as np
import nibabel as nib
from utils import run, spm_run_batch, matlab_run_script, matlab_define, run_script_matlab
from functions import project_epi, correlation, solve_nan, convert_mesh, correlation_voxel_voxel
# ************************** PIPELINE ******************************************
def import_data(src_bids, intertva_dir, subdir, sub):
"""
Import all needed files for one subject
:param src_bids: Original BIDS directory (from Bastien Cagna)
:param intertva_dir: Already preprocessed and anaysed data directory
:param subdir: New directory for rsfMRI data
:param sub: Subject's ID
"""
# Import data
# Resting state fMRI
print("Import resting state fMRI of " + sub)
run('mkdir {}/{}/func -vp'.format(subdir, sub))
run("cp {}/{}/func/{}_task-rest_bold.nii.gz {}/{}/func/".format(src_bids, sub, sub, subdir, sub))
run('gunzip {}/{}/func/{}_task-rest_bold.nii.gz '.format(subdir, sub, sub))
# fmap data
print("Import fmap data of " + sub)
run('mkdir {}/{}/fmap -vp'.format(subdir, sub))
run("cp {}/{}/fmap/{}_acq-topup2_fieldmap.nii.gz {}/{}/fmap/".format(src_bids, sub, sub, subdir, sub))
run('gunzip {}/{}/fmap/{}_acq-topup2_fieldmap.nii.gz '.format(subdir, sub, sub))
run("cp {}/{}/fmap/{}_acq-topup2_magnitude.nii.gz {}/{}/fmap/".format(src_bids, sub, sub, subdir, sub))
run('gunzip {}/{}/fmap/{}_acq-topup2_magnitude.nii.gz '.format(subdir, sub, sub))
# Anatomical MRI
print("Import Anatomical MRI of " + sub)
run('mkdir {}/{}/anat -vp'.format(subdir, sub))
run("cp {}/{}/anat/masked_msanlm_{}_T1w.nii {}/{}/anat/".format(intertva_dir, sub, sub, subdir, sub))
run("cp {}/{}/anat/c2sanlm_{}_T1w.nii {}/{}/anat/".format(intertva_dir, sub, sub, subdir, sub))
run("cp {}/{}/anat/c3sanlm_{}_T1w.nii {}/{}/anat/".format(intertva_dir, sub, sub, subdir, sub))
# Localizer data
print("Import localizer data of " + sub)
run('mkdir {}/{}/func/localizer/vol -vp'.format(subdir, sub)) # Localizer files
run('cp {}/{}/func/localizer/vol/u{}_task-localizer_bold.nii {}/{}/func/localizer/vol/ -v'.format(intertva_dir, sub, sub, subdir, sub))
# Annotations files
print("Import labeled data of " + sub)
run('mkdir {}/{}/label -vp'.format(subdir, sub)) # Annotations files
run('cp {}/{}/fs/{}/label/lh.aparc.a2009s.annot {}/{}/label/ -v'.format(intertva_dir, sub, sub, subdir, sub))
run('cp {}/{}/fs/{}/label/rh.aparc.a2009s.annot {}/{}/label/ -v'.format(intertva_dir, sub, sub, subdir, sub))
def create_mask(root, sub):
func_f = root+'/rsfmri/{}/func/ua{}_task-rest_bold.nii'.format(sub, sub)
func_nii = nib.load(func_f)
data = func_nii.get_data()
affine = func_nii.get_affine()
print(affine)
print(data.shape)
mask = np.ones(data.shape[:3])
mask_nii = nib.Nifti1Image(mask, affine)
print(mask_nii.get_data().shape)
nib.save(mask_nii, func_f[:-4] + '_fullimage_mask.nii')
def projection(subdir, sub, template):
gii_dir = subdir + "/" + sub + "/glm/noisefiltering/"
fs_subdir = "/hpc/banco/cagna.b/my_intertva/surf/data/" + sub + "/fs"
for ct in range(1, 621):
filename = "Res_{:04d}".format(ct)
nii_file = gii_dir + filename + ".nii"
project_epi(fs_subdir, sub, nii_file, filename, gii_dir, tgt_subject=template, hem_list=['lh', 'rh'], sfwhm=0)
def pipeline(root, sub, src_bids, intertva_dir):
subdir = root + "/rsfmri"
matlabdir = root + "/scripts/matlab"
# load resting-state fMRI
import_data(src_bids, intertva_dir, subdir, sub)
# preprocessing of resting state fMRI: Slice Timing, Compute VDM, Realing & Unwrap, Coregistration, and PhysioTapas
spm_run_batch(root + "/script_batch_rsfmri/"
"preprocess.m", {'subdir': subdir,'subname': sub}, display=False)
# PhysioTapas
spm_run_batch(root + "/script_batch_rsfmri/"
"batch_physio.m", {'subdir': subdir,'subname': sub}, display=True)
# create mask
create_mask(root, sub)
# Model Specification with GLM
spm_run_batch(root + "/script_batch_rsfmri/"
"model_specification.m", {'subdir': subdir,'subname': sub}, display=False)
# Use of explicit masks to calculate the GLM in SPM
run_script_matlab(root + "/script_batch_rsfmri/"
"mask_spm.m", {'subdir': subdir,'subname': sub})
# Model Estimation
spm_run_batch(root + "/script_batch_rsfmri/"
"model_estimation.m", {'subdir': subdir,'subname': sub}, display=False)
# Check and solve the nan values in nii files
solve_nan(subdir, sub)
# Projection of nii files into gii files on freesurfer6 template: sub (native space), fsaverage, fsaverage5, or fsaverage6
template='fsaverage5'
projection(subdir, sub, template)
# Convert white mesh to gii format
convert_mesh(subdir, sub)
# Compute the correlation matrix (Voxels/ROIs)
correlation(subdir, sub, template)
# Compute the correlation matrix (Voxels/ROIs)
correlation_voxel_voxel(subdir, sub, template)
# ************************ INTERPRETER *****************************************
if __name__ == "__main__":
rt = "/hpc/banco/sellami.a/InterTVA"
orig_bids = "/hpc/banco/cagna.b/my_intertva/openneuro/bids"
intertva = "/hpc/banco/cagna.b/my_intertva/surf/data/"
# Process each subject that specified in the command line
for i in range(1, len(sys.argv)):
pipeline(rt, sys.argv[i], orig_bids, intertva) # No Interactive mode
#pipeline(rt, "sub-{:02d}".format(int(sys.argv[i])), orig_bids, intertva) # Interactive mode
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment