diff --git a/python/doc/_notebooks/create_subregions.ipynb b/python/doc/_notebooks/create_subregions.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..504350efeff48f13817750c8277b46fc4c3859d1 --- /dev/null +++ b/python/doc/_notebooks/create_subregions.ipynb @@ -0,0 +1,134 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demo for `tffpy.create_subregions.create_subregions`\n", + "\n", + "A simple demonstration for creating sub-regions from a boolean time-frequency mask" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%javascript\n", + "IPython.OutputArea.prototype._should_scroll = function(lines) {\n", + " return false;\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = [15.0, 7.0]\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from tffpy.datasets import get_mix\n", + "from tffpy.create_subregions import create_subregions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig_dir = 'fig_create_subregions'\n", + "x_mix, dgt_params, signal_params, mask, x_loc, x_wb = \\\n", + " get_mix(loc_source='bird',\n", + " wideband_src='car',\n", + " crop=8192,\n", + " win_dur=256/8000,\n", + " win_type='gauss',\n", + " hop_ratio=1/4,\n", + " n_bins_ratio=4,\n", + " n_iter_closing=3,\n", + " n_iter_opening=3,\n", + " closing_first=True,\n", + " delta_mix_db=0,\n", + " delta_loc_db=20,\n", + " wb_to_loc_ratio_db=16,\n", + " or_mask=True,\n", + " fig_dir=None)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tol = 1e-9\n", + "mask_with_subregions, norms = create_subregions(mask_bool=mask, \n", + " dgt_params=dgt_params, signal_params=signal_params, \n", + " tol=tol, fig_dir=fig_dir, return_norms=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('Values in mask:', np.unique(mask_with_subregions))\n", + "print('Number of sub-regions:', np.max(mask_with_subregions))\n", + "plt.semilogy(np.sort(np.unique(norms)))\n", + "plt.title('Distances between sub-regions (sorted norm coefficients without duplicates)')\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}