diff --git a/README.md b/README.md
index fa4f31857e623127e8bb36dae2bd031d85677034..df067931a69fbe05c7d9f2c3d62f0a8197880484 100644
--- a/README.md
+++ b/README.md
@@ -59,18 +59,119 @@ and then proceed to the installation of required Python packages:
 pip install -r mupix/requirements.txt
 ```
 
-## 2 - Train a µPIX model from scratch using a custom dataset
 
-Once the environment is installed, you can start using µPIX scripts.
+
+
+
+
+## Use Case n°1 - Use a pre-trained µPIX model to denoise an image dataset
+
+µPIX comes with 3 ptre-trained models along with their respective datasets:
+
+|                          | Dataset | pre-trained µPIX Models |
+|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
+| ```csbeep```                 | [download](https://sync.lis-lab.fr/index.php/s/sy3SrGgqNafbP5X/download) | [download](https://sync.lis-lab.fr/index.php/s/9SxkR2QH3Z79Bbc/download) |
+| ```gastruloids```             | [download](https://sync.lis-lab.fr/index.php/s/kDyLKjCt48BfNMK/download) | [download](https://sync.lis-lab.fr/index.php/s/n2oJAw4LobTCeNZ/download) |
+| ```metrology```               | [download](https://sync.lis-lab.fr/index.php/s/mYDRTeAQxMxNPPJ/download) | [download](https://sync.lis-lab.fr/index.php/s/degZsCxN7ZXxeB6/download) |
+
+
+For this example, we will use a pre-trained µPIX model on the ```metrology``` dataset and we will use it to denoise the ```metrology``` test dataset.
+
+First, move to the `mupix` directory:
+```bash
+cd mupix
+```
+
+### 1 - Download and unzip the pre-trained µPIX ```metrology``` model
+
+
+To download the ```metrology``` model, type in your Terminal:
+
+```bash
+curl -o metrology_model.zip https://sync.lis-lab.fr/index.php/s/degZsCxN7ZXxeB6/download -q
+```
+
+```bash
+unzip -qq metrology_model.zip -d metrology_model
+```
+
+The model is now stored inside ```./metrology_model``` folder. 
+
+### 2 - Download and unzip the ```metrology``` dataset
+
+To download the ```metrology``` dataset, type in your Terminal:
+
+```bash
+curl -o metrology.zip https://sync.lis-lab.fr/index.php/s/mYDRTeAQxMxNPPJ/download -q
+```
+and 
+```bash
+unzip -qq metrology.zip
+```
+This will create a ```metrology``` directory containing two subdirectories: ```train``` and ```test```.
+
+- ```train``` (Training data) directory contains two folders:
+- - ```GT``` folder contains clean images (Ground Truth)
+- - ```low``` folder contains the corresponding noisy images
+- ```test``` (Testing data) directory contains all the images that will be used for testing/inference the model. 
+
+For this example, we will only use the ```test``` images.
+
+
+### 3 - Create a new µPIX experiment
+
+The ```new_experiment.py``` script allows you to set up a new experiment by specifying the required paths and parameters to the dataset.
+
+#### Usage : ``` python new_experiment.py --experiment_name EXPERIMENT_NAME  --experiment_path EXPERIMENT_PATH --clean_data_path CLEAN_DATA_PATH --noisy_data_path NOISY_DATA_PATH [--test_data_path TEST_DATA_PATH]```
+
+| Argument                 | Description |
+|--------------------------|-------------|
+| `--experiment_name`      | Name of the µPIX experiment. |
+| `--experiment_path`      | Path where the µPIX experiment will be saved. |
+| `--clean_data_path`      | Path to the clean dataset (Train). |
+| `--noisy_data_path`      | Path to the noisy dataset (Train). |
+| `--test_data_path` *(optional)* | Path to the test dataset (if available). |
+
+
+In our case, as we want just to use the pre-trained µPIX ```metrology``` model in inference (no training), we don't need to provide the ```clean_data_path``` and ```noisy_data_path``` parameters so we left it empty.
+Nevertheless, we have to indicate the path that contains the test data image we want to denoise using µPIX using the ```test_data_path``` parameter, and the ```experiment_name``` we want to create as well as the location where the experiment will be stored using the ```experiment_path``` parameter.
+
+Type the following to create experiment:
+
+```bash
+python new_experiment.py --experiment_name "metrology_experiment" --experiment_path "./experiments" --clean_data_path "" --noisy_data_path "" --test_data_path "./metrology/test"
+```
+
+If everything works correctly you should see:
+```
+Experiment 'metrology_experiment' created successfully at ./experiments/metrology_experiment/
+```
+
+### 4 - Denoising
+
+The `mupixinfer.py` script allows you to use a pre-trained µPIX model to denoise a dataset located in the `test` directory inside the experiment path.
+
+#### Usage : ```python mupixinfer.py --experiment_path EXPERIMENT_PATH```
+
+For our example, here is the command you need to type to start the inference using the pre-trained µPIX model for the ```metrology``` test dataset:
+
+```bash
+python mupixinfer.py --experiment_path "./experiments/metrology_experiment/"
+```
+
+Once finished, the denoised images are stored inside ```./experiments/metrology_experiment/predictions/``` directory.
+
+
+## Use case n°2 - Train a µPIX model from scratch using a custom dataset
 
 Move to the `mupix` directory:
 ```bash
 cd mupix
 ```
-As an example, we will train a µPIX model from scratch using the Metrology dataset.
+As an example, we will train a µPIX model from scratch using the ```metrology``` dataset.
 
 
-### 2.1 - Download/Prepare the dataset
+### 2.1 - Download the dataset
 First download the dataset manually ([here](https://sync.lis-lab.fr/index.php/s/mYDRTeAQxMxNPPJ/download)), and unzip it.
 
 Alternatively, if you have ```curl``` installed on your system, you can download and extract the dataset using:
@@ -224,11 +325,11 @@ Step>3, Generator loss : 1.941e+05
 ...
 ...
 ```
-By default, the model is trained for 100 epochs (see ```hyperparameters.json```) but contains an ```EarlyStopping``` mechanisms (See the paper methods section pour details) governed by the ```patience``` parameters (see ```hyperparameters.json```). The number of steps per epochs is calculated by dividing the number of training tiles divided by the ```batch_size```.
+By default, the model is trained for 100 epochs (see ```hyperparameters.json```) but contains an ```EarlyStopping``` mechanisms (See the paper methods section pour details) governed by the ```patience``` parameters (see ```hyperparameters.json```). 
 
 You can stop the training anytime. The best checkpoints of your model is available inside ```experiments/metrology_experiment/results/networks/```
 
-If the training stops because it reached the maximum number of epochs defined inside the ```hyperparameters.json``` configuration file, nd you want to continue to train your model for more epochs, you can use the ```--retrain``` parameters to resume the training:
+If the training stops because it reached the maximum number of epochs defined inside the ```hyperparameters.json``` configuration file, and you want to continue to train your model for more epochs, you can use the ```--retrain``` parameters to resume the training where it stops:
 
 ```bash
 python mupixtraining.py --experiment_path "./experiments/metrology_experiment" --retrain
@@ -252,31 +353,13 @@ For our example, here is the command you need to type to start the inference usi
 python mupixinfer.py --experiment_path "./experiments/metrology_experiment/"
 ```
 
-
-
-## 3 - Use a pre-trained µPIX model to denoise an image dataset
-
-For this example, we will use a pre-trained µPIX model on the ```metrology``` dataset and we will use it to denoise the ```metrology``` test dataset.
-
-### 3.1 - Download and unzip the pre-trained µPIX ```metrology``` model
-
-```bash
-curl -o metrology_model.zip https://sync.lis-lab.fr/index.php/s/degZsCxN7ZXxeB6/download -q
-```
-
-```bash
-unzip -qq metrology_model.zip -d metrology_model
+Once done you can see that the predictions has been stored inside ```./experiments/metrology_experiment/predictions/``` directory:
 ```
-
-The model is now stored inside ```./metrology_model```
-
-### 3.2 - Create a new experiment containing the image dataset
-
-As we are using the model in inference only (no training), we can skip the ```---clean_data_path``` and ```--noisy_data_path``` parameters of the ```new_experiment.py``` script.
-If you don't already have donwload the ```metrology``` dataset, please download it (section 2.1: Create a µPIX experiments)
-
-```bash
-python new_experiment.py --experiment_name metrology_inferecence --experiment_path "./experiments" --clean_data_path "" --noisy_data_path "" --test_data_path "./metrology/test"
+Saved weights to ./experiments/metrology_experiment/results/networks/Generator.h5
+1/1 [==============================] - 7s 7s/step
+Saved prediction: ./experiments/metrology_experiment/predictions/X_StageData0001.tif
+All predictions saved successfully!
+Data predicted at ./experiments/metrology_experiment/predictions !
 ```
 
 
@@ -285,6 +368,5 @@ python new_experiment.py --experiment_name metrology_inferecence --experiment_pa
 
 
 
-
 ## License
 This code repository is release under the [CC BY-NS-SA 4.0](https://gitlab.lis-lab.fr/sicomp/mupix/-/blob/main/LICENSE?ref_type=heads)
diff --git a/new_experiment.py b/new_experiment.py
index 219b263933e7dc14a8393a1864072d90098a6b29..39170eb90facf6b0201a37bd3422c2d13e7366a2 100644
--- a/new_experiment.py
+++ b/new_experiment.py
@@ -65,8 +65,8 @@ def main():
 
     # Organize the hyperparameters into a dictionary
     hyperparameters = {
-        'learning_rate_generator': 1e-4,
-        'learning_rate_discriminator': 1e-4,
+        'learning_rate_generator': 1e-3,
+        'learning_rate_discriminator': 1e-3,
         'batch_size': 16,
         'num_epochs': 100,
         'loss_weight': 10,