diff --git a/skais/ais/ais_trajectory.py b/skais/ais/ais_trajectory.py
index e6ba885dcafca82f0a023eee0196003472ce28b4..7e1307e18352bf3caf025b5d89c6d73f1f02faba 100644
--- a/skais/ais/ais_trajectory.py
+++ b/skais/ais/ais_trajectory.py
@@ -62,7 +62,7 @@ def apply_time_sequence(dat, time, func):
 def __get_image_value__(features, bounds):
     value = []
     for f, b in zip(features, bounds):
-        value.append(1 - (b[1] - f) / b[1])
+        value.append(1 - (b[1] - f - b[0]) / (b[1] - b[0]))
     return value
 
 
@@ -236,22 +236,42 @@ class AISTrajectory(AISPoints):
                                       node_size=0):
         nb_channels = 1
 
-        if bounding_box != 'fit':
-            raise ValueError("feature not implemented")
         positions = self.df[['longitude', 'latitude']].to_numpy()
-        min_lon, max_lon = (min(positions[:, 0]), max(positions[:, 0]))
-        min_lat, max_lat = (min(positions[:, 1]), max(positions[:, 1]))
-        if min_lat == max_lat:
-            min_lat -= 1
-            max_lat += 1
-        if min_lon == max_lon:
-            min_lon -= 1
-            max_lon += 1
+        if bounding_box == 'fit':
+            lower_lon, upper_lon = (min(positions[:, 0]), max(positions[:, 0]))
+            lower_lat, upper_lat = (min(positions[:, 1]), max(positions[:, 1]))
+        elif bounding_box == 'centered':
+            center_lon, center_lat = positions[-1]
+            min_lon, max_lon = (min(positions[:, 0]), max(positions[:, 0]))
+            min_lat, max_lat = (min(positions[:, 1]), max(positions[:, 1]))
+
+            distance_to_center = max(center_lon - min_lon, max_lon - center_lon, center_lat - min_lat,
+                                     max_lat - center_lat)
+
+            upper_lat = center_lat + distance_to_center
+            lower_lat = center_lat - distance_to_center
+            upper_lon = center_lon + distance_to_center
+            lower_lon = center_lon - distance_to_center
+        elif type(bounding_box) is list:
+            upper_lon = bounding_box[1][0]
+            lower_lon = bounding_box[0][0]
+            upper_lat = bounding_box[1][1]
+            lower_lat = bounding_box[0][1]
+        else:
+            raise ValueError(f"Option not supported: {bounding_box}")
+
+        if lower_lat == upper_lat:
+            lower_lat -= 1
+            upper_lat += 1
+        if lower_lon == upper_lon:
+            lower_lon -= 1
+            upper_lon += 1
 
         if features is None:
             data = np.zeros((height, width, nb_channels), dtype=np.uint8)
             for longitude, latitude in positions:
-                x_coord, y_coord = get_coord(latitude, longitude, height, width, min_lat, max_lat, min_lon, max_lon)
+                x_coord, y_coord = get_coord(latitude, longitude, height, width, lower_lat, upper_lat, lower_lon,
+                                             upper_lon)
 
                 x_lower_bound = max(0, x_coord - node_size)
                 x_upper_bound = min(height - 1, x_coord + node_size)
@@ -265,30 +285,38 @@ class AISTrajectory(AISPoints):
             if link:
                 lon, lat = positions[0, 0], positions[0, 1]
                 for longitude, latitude in positions[1:]:
-                    x_prv, y_prev = get_coord(lat, lon, height, width, min_lat, max_lat, min_lon, max_lon)
-                    x_nxt, y_nxt = get_coord(latitude, longitude, height, width, min_lat, max_lat, min_lon, max_lon)
+                    x_prv, y_prev = get_coord(lat, lon, height, width, lower_lat, upper_lat, lower_lon, upper_lon)
+                    x_nxt, y_nxt = get_coord(latitude, longitude, height, width, lower_lat, upper_lat, lower_lon,
+                                             upper_lon)
 
                     lon, lat = longitude, latitude
                     for x, y in bresenham(x_prv, y_prev, x_nxt, y_nxt):
                         data[x, y] = [1]
 
         else:
+            bounds = []
             if type(features) is list:
                 nb_channels = len(features)
+                features_vectors = self.df[features].to_numpy()
+                for c in features_vectors.T:
+                    bounds.append((0, max(c)))
             elif type(features) is str:
-                features = [features]
+                features_vectors = self.df[[features]].to_numpy()
+                for c in features_vectors.T:
+                    bounds.append((0, max(c)))
+            elif type(features) is dict:
+                bounds = list(features.values())
+                features_vectors = self.df[features.keys()].to_numpy()
             else:
                 raise TypeError("Type not supported")
             data = np.zeros((height, width, nb_channels), dtype=np.float)
-            features_vectors = self.df[features].to_numpy()
-            bounds = []
-            for c in features_vectors.T:
-                bounds.append((min(c), max(c)))
+
 
             for pos, f in zip(positions, features_vectors):
                 latitude = pos[1]
                 longitude = pos[0]
-                x_coord, y_coord = get_coord(latitude, longitude, height, width, min_lat, max_lat, min_lon, max_lon)
+                x_coord, y_coord = get_coord(latitude, longitude, height, width, lower_lat, upper_lat, lower_lon,
+                                             upper_lon)
                 value = __get_image_value__(f, bounds)
                 x_lower_bound = max(0, x_coord - node_size)
                 x_upper_bound = min(height - 1, x_coord + node_size)
@@ -307,8 +335,9 @@ class AISTrajectory(AISPoints):
                 for pos, f in zip(positions[1:], features_vectors[1:]):
                     latitude = pos[1]
                     longitude = pos[0]
-                    x_prv, y_prev = get_coord(lat, lon, height, width, min_lat, max_lat, min_lon, max_lon)
-                    x_nxt, y_nxt = get_coord(latitude, longitude, height, width, min_lat, max_lat, min_lon, max_lon)
+                    x_prv, y_prev = get_coord(lat, lon, height, width, lower_lat, upper_lat, lower_lon, upper_lon)
+                    x_nxt, y_nxt = get_coord(latitude, longitude, height, width, lower_lat, upper_lat, lower_lon,
+                                             upper_lon)
                     lon, lat = longitude, latitude
                     for x, y in bresenham(x_prv, y_prev, x_nxt, y_nxt):
                         for i, v in enumerate(value):
diff --git a/skais/tests/ais/test_ais_trajectory.py b/skais/tests/ais/test_ais_trajectory.py
index d5e64a0e87a67f15f19289c2f1d527f215b178db..56aa71cd0dfbc24deed6671584a38f7862a732e8 100644
--- a/skais/tests/ais/test_ais_trajectory.py
+++ b/skais/tests/ais/test_ais_trajectory.py
@@ -380,8 +380,10 @@ class TestAISTrajectory(unittest.TestCase):
 
         self.assertListEqual(result, expected)
 
-    def test_generate_array_from_positions(self):
-        trajectory = AISTrajectory(
+
+class TestAISTrajectoryImageGeneration(unittest.TestCase):
+    def setUp(self) -> None:
+        self.trajectory = AISTrajectory(
             pd.DataFrame(
                 {
                     "latitude": [0, 10, 0, -10],
@@ -391,8 +393,9 @@ class TestAISTrajectory(unittest.TestCase):
             )
         )
 
-        result = trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box='fit',
-                                                          features=None, node_size=0).reshape((9, 9))
+    def test_generate_array_from_positions(self):
+        result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box='fit',
+                                                               features=None, node_size=0).reshape((9, 9))
         expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1],
                              [0, 0, 0, 0, 0, 0, 0, 0, 0],
                              [0, 0, 0, 0, 0, 0, 0, 0, 0],
@@ -406,18 +409,8 @@ class TestAISTrajectory(unittest.TestCase):
         np.testing.assert_array_equal(result, expected)
 
     def test_generate_array_from_positions_node_size(self):
-        trajectory = AISTrajectory(
-            pd.DataFrame(
-                {
-                    "latitude": [0, 10, 0, -10],
-                    "longitude": [0, 10, 10, -10],
-                    "ts_sec": [i for i in range(4)]
-                }
-            )
-        )
-
-        result = trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box='fit',
-                                                          features=None, node_size=1).reshape((9, 9))
+        result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box='fit',
+                                                               features=None, node_size=1).reshape((9, 9))
         expected = np.array([[0, 0, 0, 0, 0, 0, 0, 1, 1],
                              [0, 0, 0, 0, 0, 0, 0, 1, 1],
                              [0, 0, 0, 0, 0, 0, 0, 0, 0],
@@ -512,7 +505,7 @@ class TestAISTrajectory(unittest.TestCase):
                     "latitude": [0, 10, 0, 20],
                     "longitude": [0, 10, 20, 20],
                     "ts_sec": [i for i in range(4)],
-                    "sog": [10,10,20,40]
+                    "sog": [10, 10, 20, 40]
                 }
             )
         )
@@ -538,7 +531,7 @@ class TestAISTrajectory(unittest.TestCase):
                     "latitude": [0, 10, 0, 20],
                     "longitude": [0, 10, 20, 20],
                     "ts_sec": [i for i in range(4)],
-                    "sog": [10,10,20,40],
+                    "sog": [10, 10, 20, 40],
                     "cog": [40, 20, 10, 10]
                 }
             )
@@ -546,14 +539,80 @@ class TestAISTrajectory(unittest.TestCase):
 
         result = trajectory.generate_array_from_positions(height=9, width=18, link=True, bounding_box='fit',
                                                           features=['sog', 'cog'], node_size=0)
-        expected = np.array([[[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,1], [0.25,0.5], [0.25,0.5], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0,0], [0,0], [0,0], [0,0], [0.25,1], [0.25,1], [0,0], [0,0], [0,0], [0.25,0.5], [0.25,0.5], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0,0], [0,0], [0.25,1], [0.25,1], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,0.5], [0.25,0.5], [0,0], [0,0], [0,0], [0.5,0.25]],
-                             [[0,0], [0.25,1], [0.25,1], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,0.5], [0.25,0.5], [0,0], [0.5,0.25]],
-                             [[0.25,1], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,0.5], [0.5,0.25]]])
-
-        np.testing.assert_array_equal(result, expected)
\ No newline at end of file
+        expected = np.array([[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 1], [0.25, 0.5],
+                              [0.25, 0.5], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 1], [0.25, 1], [0, 0], [0, 0], [0, 0],
+                              [0.25, 0.5], [0.25, 0.5], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0, 0], [0, 0], [0.25, 1], [0.25, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0.25, 0.5], [0.25, 0.5], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
+                             [[0, 0], [0.25, 1], [0.25, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 0.5], [0.25, 0.5], [0, 0], [0.5, 0.25]],
+                             [[0.25, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
+                              [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 0.5], [0.5, 0.25]]])
+
+        np.testing.assert_array_equal(result, expected)
+
+    def test_generate_array_centered(self):
+        result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box='centered',
+                                                               features=None, node_size=0).reshape((9, 9))
+        expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 1, 0, 1],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 1, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0]])
+
+        np.testing.assert_array_equal(result, expected)
+
+    def test_generate_array_bounding_box(self):
+        result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False,
+                                                               bounding_box=[(0, 0), (10, 10)],
+                                                               features=None, node_size=0).reshape((9, 9))
+        expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0],
+                             [1, 0, 0, 0, 0, 0, 0, 0, 1]])
+
+        np.testing.assert_array_equal(result, expected)
+
+    def test_generate_array_feature_bounds(self):
+        trajectory = AISTrajectory(
+            pd.DataFrame(
+                {
+                    "latitude": [0, 10, 0, 20],
+                    "longitude": [0, 10, 20, 20],
+                    "ts_sec": [i for i in range(4)],
+                    "sog": [10, 10, 20, 40]
+                }
+            )
+        )
+
+        result = trajectory.generate_array_from_positions(height=9, width=18, link=True, bounding_box='fit',
+                                                          features={"sog": (0, 80)}, node_size=0).reshape((9, 18))
+        expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
+                             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
+                             [0, 0, 0, 0, 0, 0, 0, 0.25, 0.25, 0.25, 0, 0, 0, 0, 0, 0, 0, 0.5],
+                             [0, 0, 0, 0, 0, 0.25, 0.25, 0, 0, 0, 0.25, 0.25, 0, 0, 0, 0, 0, 0.5],
+                             [0, 0, 0, 0.25, 0.25, 0, 0, 0, 0, 0, 0, 0, 0.25, 0.25, 0, 0, 0, 0.5],
+                             [0, 0.25, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0.25, 0, 0.5],
+                             [0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0.5]]) / 2
+
+        np.testing.assert_array_equal(result, expected)