diff --git a/figures/scatter_scores_minusbins.pdf b/figures/scatter_scores_minusbins.pdf
deleted file mode 100644
index 8bb7e849b99b0b950776c8bdf93f0862615a818f..0000000000000000000000000000000000000000
Binary files a/figures/scatter_scores_minusbins.pdf and /dev/null differ
diff --git a/figures/scores_minusbins.pdf b/figures/scores_minusbins.pdf
deleted file mode 100644
index 1847fb3a5d3343734f754477b9d08c361b4e80f5..0000000000000000000000000000000000000000
Binary files a/figures/scores_minusbins.pdf and /dev/null differ
diff --git a/figures/scores_minusvocs.pdf b/figures/scores_minusvocs.pdf
deleted file mode 100644
index 9f99a23369a5d9a3eeb100548d8ad8b329a7938f..0000000000000000000000000000000000000000
Binary files a/figures/scores_minusvocs.pdf and /dev/null differ
diff --git a/get_noisy_labels.py b/get_noisy_labels.py
deleted file mode 100644
index ad9e99aff13166b0e301f76db484caf231fa9072..0000000000000000000000000000000000000000
--- a/get_noisy_labels.py
+++ /dev/null
@@ -1,28 +0,0 @@
-from glob import glob
-from p_tqdm import p_umap
-from scipy import signal, interpolate
-import pandas as pd, numpy as np
-from metadata import species
-import librosa, mir_eval
-import os, shutil, argparse
-
-parser = argparse.ArgumentParser()
-parser.add_argument('specie', type=str, help="Species to treat specifically", default=None)
-args = parser.parse_args()
-
-for specie in species if args.specie is None else [args.specie]:    wavpath, FS, nfft, downsample = species[specie].values()
-    os.system(f'rm -R \"noisy_pngs/{wavpath.split("*")[0]}/*\"')
-
-    dt = nfft / 8 / FS # winsize / 8
-    def fun(fn):
-        df = pd.read_csv(f'{fn[:-4]}_preds.csv')
-        if 'salience' in df.columns and (df.salience.quantile(.25) < 0.2 or df.SHR.quantile(.75) > 0):
-            # print(fn, snr, subharSNR)
-            if not os.path.isdir(f'noisy_pngs/{fn.rsplit("/",1)[0]}'):
-                os.mkdir(f'noisy_pngs/{fn.rsplit("/",1)[0]}')
-            shutil.copyfile(f'annot_pngs/{fn[:-4]}.png', f'noisy_pngs/{fn[:-4]}.png')
-            return 1
-        else:
-            return 0
-    count = p_umap(fun, glob(wavpath), desc=specie)
-    print(f'dropped {sum(count)} vocs out of {len(glob(wavpath))}')