diff --git a/figures/scatter_scores_minusbins.pdf b/figures/scatter_scores_minusbins.pdf deleted file mode 100644 index 8bb7e849b99b0b950776c8bdf93f0862615a818f..0000000000000000000000000000000000000000 Binary files a/figures/scatter_scores_minusbins.pdf and /dev/null differ diff --git a/figures/scores_minusbins.pdf b/figures/scores_minusbins.pdf deleted file mode 100644 index 1847fb3a5d3343734f754477b9d08c361b4e80f5..0000000000000000000000000000000000000000 Binary files a/figures/scores_minusbins.pdf and /dev/null differ diff --git a/figures/scores_minusvocs.pdf b/figures/scores_minusvocs.pdf deleted file mode 100644 index 9f99a23369a5d9a3eeb100548d8ad8b329a7938f..0000000000000000000000000000000000000000 Binary files a/figures/scores_minusvocs.pdf and /dev/null differ diff --git a/get_noisy_labels.py b/get_noisy_labels.py deleted file mode 100644 index ad9e99aff13166b0e301f76db484caf231fa9072..0000000000000000000000000000000000000000 --- a/get_noisy_labels.py +++ /dev/null @@ -1,28 +0,0 @@ -from glob import glob -from p_tqdm import p_umap -from scipy import signal, interpolate -import pandas as pd, numpy as np -from metadata import species -import librosa, mir_eval -import os, shutil, argparse - -parser = argparse.ArgumentParser() -parser.add_argument('specie', type=str, help="Species to treat specifically", default=None) -args = parser.parse_args() - -for specie in species if args.specie is None else [args.specie]: wavpath, FS, nfft, downsample = species[specie].values() - os.system(f'rm -R \"noisy_pngs/{wavpath.split("*")[0]}/*\"') - - dt = nfft / 8 / FS # winsize / 8 - def fun(fn): - df = pd.read_csv(f'{fn[:-4]}_preds.csv') - if 'salience' in df.columns and (df.salience.quantile(.25) < 0.2 or df.SHR.quantile(.75) > 0): - # print(fn, snr, subharSNR) - if not os.path.isdir(f'noisy_pngs/{fn.rsplit("/",1)[0]}'): - os.mkdir(f'noisy_pngs/{fn.rsplit("/",1)[0]}') - shutil.copyfile(f'annot_pngs/{fn[:-4]}.png', f'noisy_pngs/{fn[:-4]}.png') - return 1 - else: - return 0 - count = p_umap(fun, glob(wavpath), desc=specie) - print(f'dropped {sum(count)} vocs out of {len(glob(wavpath))}')