diff --git a/run_CNN.py b/run_CNN.py index 60789bb1e567ebb47fb3644ed36644495ab4e933..4a4e07147782c9f3fb71b775f60b403467ab3b41 100644 --- a/run_CNN.py +++ b/run_CNN.py @@ -8,12 +8,12 @@ import pandas as pd from tqdm import tqdm import argparse -parser = argparse.ArgumentParser(description="Run this script to use a CNN for inference on a folder of audio files.") +parser = argparse.ArgumentParser(description="Run this script to use a CNN for the detection of cetacean vocalizations on a folder of audio files.") parser.add_argument('audio_folder', type=str, help='Path of the folder with audio files to process') parser.add_argument('specie', type=str, help='Target specie to detect', choices=['megaptera', 'delphinid', 'orcinus', 'physeter', 'balaenoptera']) -parser.add_argument('-lensample', type=float, help='Length of the signal excerpts to process (sec)', default=5), -parser.add_argument('-batch_size', type=int, help='Amount of samples to process at a time', default=32), -parser.add_argument('-maxPool', help='Wether to keep only the maximal prediction of a sample or the full sequence', action='store_true'), +parser.add_argument('-lensample', type=float, help='Length of the signal for each sample (in seconds)', default=5), +parser.add_argument('-batch_size', type=int, help='Amount of samples to process at a time (usefull for parallel computation using a GPU)', default=32), +parser.add_argument('-maxPool', help='Wether to keep only the maximal prediction of each sample or the full sequence', action='store_true'), parser.add_argument('-no-maxPool', dest='maxPool', action='store_false') parser.set_defaults(maxPool=True) args = parser.parse_args()