From 0cd22bbd9e4d8e24ae56dbed1e3739e3d8b984a0 Mon Sep 17 00:00:00 2001 From: Paul Best <paul.best@lis-lab.fr> Date: Tue, 15 Feb 2022 15:31:33 +0100 Subject: [PATCH] Update README.md --- README.md | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) diff --git a/README.md b/README.md index 5d8ed51..45acf7c 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,31 @@ # AT_BlueFin +*Resnet-50 [1] trained on the Acoustic Trends Blue Fin Library open access dataset [2]* + +## Dependencies +`torch` `torchvision` `scipy` `soundfile` `numpy` `pandas` `tqdm` `argparse` + +install with `pip install pacakge-name` + +## Project description + +The CNN is ran using the run_model.py script. +For interface description run `python run_model.py --help` + +The script forwards the CNN over a given list of sound files and writes a .csv file with chunk and class wise predictions. +The CNN was trained as a multi-label classifier over the dataset proposed by Miller et al. [2] (every station except kerguelen 2005). + +Known classes are : +Bp_20Plus, Bp-Downsweep, Bp_20Hz, Bm_Ant-A, Bm_Ant-Z, Bm_Ant-B, and Bm_D. +Bp standing for fin whale (Balaenoptera Physalus) and Bm for blue whale (Balaenoptera Musculus) + +The model reached an 0.66 mAP score over the test set (kerguelen 2005) and 0.89 over the train set (remaining data). + +### Refererences +[1] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015). + +[2] Miller, Brian S., et al. "An open access dataset for developing automated detectors of Antarctic baleen whale sounds and performance evaluation of two commonly used detectors." Scientific Reports 11.1 (2021): 1-18. + + +### Contact info +paul.best@univ-tln.fr -- GitLab