diff --git a/main.tex b/main.tex index 5b551c444b3827434281a463510c64a94cb03450..a78616599ac8f77c77e1effa78c9aacb91a415dd 100644 --- a/main.tex +++ b/main.tex @@ -231,6 +231,18 @@ pebble transducer model. candidate: \begin{theorem} Any transduction defined by a nested marble transducer can be expressed as an \msomi. \end{theorem} +\begin{remark} +~ +\begin{itemize} + + +\item Nested marble transducers subsume both pebble and marble transducers. + +\item They are closed under postcomposition by polyregular functions. TODO check +\end{itemize} + + +\end{remark} \begin{example} Let $A=\set{a,b}$. Let us define an \expreg function $f:\left(A\cup \set{\sharp}\right)^*\rightarrow (A\times \set{0,1}\cup \set{\natural})^*$. @@ -252,14 +264,21 @@ An invisible-pebble automaton $\auta$ is given by: \begin{itemize} \item a finite set of letters $A$, and two extra letters $\set{\vdash,\dashv}$ \item a finite set of states $Q$ -\item a transition function $\delta: A_{\vdash,\dashv}\times Q \rightarrow \set{\mleft,\mright,\push,\pop}$ -\item a push function: $\push: A_{\vdash,\dashv}\times Q\rightarrow Q$ -\item a pop update function: $\pop: A_{\tiny{\vdash,\dashv}}\times Q\rightarrow (Q\rightarrow Q)$ +\item a transition function $\delta: A_{\vdash,\dashv}\times Q \rightarrow \set{\mleft,\mright,\push,\pop}\times Q$ + \end{itemize} -Let us explain how the automaton is run over a word $w\in A^*$. The automaton actually runs over the word ${\vdash} w {\dashv}$. -A \emph{configuration} $c$ over a word ${\vdash} w {\dashv}$ of length $n$ is a word over $Q\times\set{1,\ldots,n}$. The configuration is actually a stack of reading heads over the input word. The head of the stack is the \emph{active head}. +Let us explain how the automaton is run over a word $u\in A^*$. The automaton actually runs over the word $v={\vdash} u {\dashv}$. +A \emph{configuration} $c$ over the word $v$ of length $n$ is a word over $Q\times\set{1,\ldots,n}$. The configuration is actually a stack of reading heads over the input word. The head of the stack is the \emph{active head}. +The \emph{initial configuration} of $\auta$ over $v$ is the word $(q_0,1)$. Given a non-empty configuration $c(p,i)$ the \emph{successor configuration} $c'$ is defined according to $\delta(v[i],p)=(t,q)$ in the following way: +\begin{itemize} +\item if $t=\mleft$, and $i>1$ then $c'=c(q,i-1)$ +\item if $t=\mright$ and $i<n$ then $c'=c(q,i+1)$ +\item if $t=\push$ then $c'=c(p,i)(q,i)$ +\item if $t=\pop$ and $c=d(r,j)$ then $c'=d(q,j)$ +\item in all other cases, $c'$ is not defined +\end{itemize} \section{Some remaining questions}