From 699d2cf4fa0f9a0d1c82edf27e0cccfb88b03023 Mon Sep 17 00:00:00 2001 From: "nathan.lhote" <nathan.lhote@lis-lab.fr> Date: Mon, 20 Feb 2023 22:11:29 +0100 Subject: [PATCH] m --- main.tex | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/main.tex b/main.tex index 7970e99..e498658 100644 --- a/main.tex +++ b/main.tex @@ -35,6 +35,7 @@ \newcommand{\rtm}{\textsf{RTM}\xspace} \newcommand{\drtm}{\textsf{DRTM}\xspace} \newcommand{\reg}{\textsf{Reg}} +\newcommand{\homo}{\textsf{Hom}\xspace} @@ -74,7 +75,7 @@ \bibliographystyle{alpha}% the mandatory bibstyle -\title{\Expreg transductions} %TODO Please add +\title{\textsc{Exponential growth\\ word-to-word transductions}} %TODO Please add \author{} @@ -359,13 +360,15 @@ For rational turing machines, the following hold: \section{The case of the successor} +Let us denote by \homo the class of free monoid homomorphisms. + \begin{theorem} -\msomi with successor is equivalent to \dlinspace reductions. +$\homo \circ\msomi$ with successor is equivalent to \dlinspace reductions. \end{theorem} \begin{proof} Given an \msomi, we can define a rational letter-to-letter relation which realizes the successor and from this obtain a linear bounded automaton. -From a linear bounded automaton, the next configuration relation can be defined in \mso. +From a linear bounded automaton, the next configuration relation can be defined in \mso. We use the homomorphism to erase the transitions that produce nothing. \end{proof} -- GitLab