From 672b427e1dd01e6775a25a9997c325d02957df58 Mon Sep 17 00:00:00 2001 From: "nathan.lhote" <nathan.lhote@lis-lab.fr> Date: Thu, 7 Jul 2022 17:38:48 +0200 Subject: [PATCH] m --- main.tex | 1 - 1 file changed, 1 deletion(-) diff --git a/main.tex b/main.tex index 7ffa3fa..d2ba0f2 100644 --- a/main.tex +++ b/main.tex @@ -107,7 +107,6 @@ where $\bar X$ denotes a $d$-tuple of monadic variables. Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar S\mid\ A \models \phi_U(\bar S)}$, given $R\in \tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar S_1,\ldots,\bar S_k}\in U^k\mid\ \phi_R(\bar S_1,\ldots,\bar S_k)}$. %Given tuples $\bar X_1,\ldots,\bar X_l$, we extend $\sem T$ by $\sem T(A,\bar X_1,\ldots,\bar X_l)=B,\set{\bar X_1},\ldots,\set{\bar X_l}$. -\fomi is defined by restricting formulas to be in \fo. A non-deterministic \msomi (\nmsomi) $S$ from $\ssign$-structures to $\tsign$-structures with $k$ parameters is given by an \msomi $T$ from $\ssign\uplus\set{X_1,\ldots,X_k}$-structures to $\tsign$-structures where $X_1,\ldots,X_k$ are additional unary symbols. Let $\pi$ denote the natural projection from $\ssign\uplus\set{X_1,\ldots,X_k}$-structures to $\ssign$-structures. We define $\sem S(A)=\set{\sem T(C)\mid\ \pi(C)=A}$. -- GitLab