diff --git a/main.tex b/main.tex index d7e0eb68a26faaf6021a2b8b4f59b1bc465d242a..a0f6a369f99bcdcf33c2ebc17f9562fefbb73f3c 100644 --- a/main.tex +++ b/main.tex @@ -4,8 +4,8 @@ \usepackage{amssymb,amsthm,amsmath,stmaryrd} \usepackage{xspace} -\newcommand{\expreg}{expregular} -\newcommand{\Expreg}{Expregular\xspace} +\newcommand{\expreg}{exp-regular\xspace} +\newcommand{\Expreg}{Exp-regular\xspace} \newcommand{\mso}{\textsf{MSO}\xspace} \newcommand{\fo}{\textsf{FO}\xspace} \newcommand{\msot}{\textsf{MSO-T}\xspace} @@ -15,6 +15,7 @@ \newcommand{\msomi}{\textsf{MSO-MI}\xspace} \newcommand{\fomi}{\textsf{FO-MI}\xspace} \newcommand{\nmsomi}{\textsf{NMSO-MI}\xspace} +\newcommand{\rev}{\textsf{rev}\xspace} \newcommand{\sst}{\textsf{SST}\xspace} \newcommand{\mtt}{\textsf{MTT}\xspace} @@ -28,13 +29,20 @@ \newcommand{\tuple}[1]{\left(#1\right)} \newcommand{\sem}[1]{\left\llbracket #1\right\rrbracket} +\newcommand{\eg}{\textit{e.g.~}} +\newcommand{\ie}{\textit{i.e.~}} + \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} +\theoremstyle{definition} +\newtheorem{remark}{Remark} +\newtheorem{question}{Question} + \bibliographystyle{alpha}% the mandatory bibstyle -\title{\Expreg functions} %TODO Please add +\title{\Expreg transductions} %TODO Please add \author{} @@ -64,11 +72,19 @@ \label{sec:prelim} \subsection{Words, languages and transductions} \subsection{Relational structures and logical interpretations} + +\subsubsection{Relational structures} +\paragraph{The orderned model of words} + +\paragraph{The powerset model of words}~\\ + +Any \mso-formula can be seen as an \fo-formula over the powerset model +\subsubsection{Logical interpretation} Here define \msoi and \foi. \subsection{Monadic interpretation} \footnote{We -could add copy to MSOMI just as in Courcelle to avoid undesirable +could add copy to \msomi just as in Courcelle to avoid undesirable cornercase behaviours with small words.} Given two relational signatures $\ssign,\tsign$, an \mso monadic interpretation $T$ of dimension $d$ from structures over $\ssign$ to structures over $\tsign$ is given by: @@ -106,9 +122,15 @@ $$ It is easy to see that $subsets\in\textsf{ExpF}$. + + +\section{Expressiveness of \expreg\ functions} + +\subsection{Backward translation theorem} + \begin{theorem}[Backward translation theorem] - Let $T$ be an \msomi $T$ of dimension $d$ from structures over $\ssign$ to - structures over $\tsign$ ,and let $\phi(x_1,\dots,x_k)$ be an \fo-formula over + Let $T$ be an \msomi of dimension $d$ from structures over $\ssign$ to + structures over $\tsign$, and let $\phi(x_1,\dots,x_k)$ be an \fo-formula over $\tsign$. We can define an \mso-formula $\psi(\bar X_1,\ldots,\bar X_k)$ such that for any structure $A$ over $\ssign$, $A\models\psi(\bar S_1,\ldots,\bar S_k) $ if and only if $\sem T(A)\models \phi(\bar S_1,\ldots,\bar S_k)$.\footnote{Note that $\bar S_i$ is a position of the structure $\sem T(A)$} \end{theorem} @@ -126,10 +148,20 @@ It is easy to see that $subsets\in\textsf{ExpF}$. regular domains. \end{corollary} +\begin{remark} +\label{rem:power} +An \msomi can also be seen as an \foi over the powerset model. +\end{remark} +\begin{question} +Does $\msot\circ \msomi \subseteq \msomi$ hold? Using Krohn-Rhodes theorem of Miko\l aj, it seems that the only difficult case + is to post-compose an \msomi with a reversible Mealy machine. That is the problem can be rephrased as: does $\rev\circ \msomi \subseteq \msomi$ hold? +\end{question} -\section{Expressiveness of \expreg\ functions} +\begin{question} +Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O(|u|+|f(u)|)$ ? +\end{question} \subsection{Closure properties} \begin{theorem} @@ -137,122 +169,57 @@ It is easy to see that $subsets\in\textsf{ExpF}$. \end{theorem} \begin{proof} - Use standard ideas for composition logical transductions: formula - substitutions. The first-order parameters of the FOI becomes +From the backward translation theorem. + Use standard ideas for composition of logical transductions: formula + substitutions. The first-order parameters of the \foi become monadic parameters. + + Alternatively this comes from Remark~\ref{rem:power}, and the fact that \foi are closed under composition. \end{proof} -\begin{theorem} - NSST$_{copy}$ $\subseteq$ \textsf{ExpR}. -\end{theorem} - -\begin{proof} - See IPAD notes. -\end{proof} - -\subsection{Lexicographic MSOMI and SST} - -An MSOMI $T$ is lexicographic if -$\phi_{\leq}(\overline{X},\overline{Y})$ is of the following form, for -$n=|\overline{X}|=|\overline{Y}|$: - -$$ -\overline{X} = \overline{Y}\vee \bigvee_{i=1}^{n} (\bigwedge_{1\leq - j<i} X_j = Y_j)\wedge \exists x\ \textsf{first-diff}(x,X_i,Y_i)\wedge \psi_i(x,X_i,Y_i) -$$ -where $\psi_i$ are MSO-formulas and $\textsf{first-diff}(x,X_i,Y_i)$ -holds true if $x$ is the $\leq$-smallest position in $X_i\cup Y_i$ -such that $x\in X_i\leftrightarrow y\not\in Y_i$. - - -An MSOMI $T$ is \emph{purely} lexicographic if all $\psi_i(x,X_i,Y_i)$ -are of the form $x\not\in X_i \wedge x\in Y_i$. - -\begin{theorem} - A transduction $f$ is definable by an SST with copy iff it is - definable by a purely lexicographic MSOMI. -\end{theorem} - -\subsection{Polyregular functions} - - -\begin{theorem} - \textsf{PolyF} $\subseteq$ \textsf{ExpF} -\end{theorem} - -\begin{proof} -\textsf{PolyF} = MSOI $\subseteq$ MSOMI = \textsf{ExpF} -\end{proof} - \subsection{\Expreg functions of polynomial growth} \begin{theorem} - $\textsf{ExpF}\cap O(n^d) = \textsf{PolyF}$ + An \msomi of growth $O(n^d)$ can be realized by an \msoi of dimension $d$. \end{theorem} -\begin{proof} - See mail Nathan sent to Mikolaj on Saturday 2 April - 2022. Moreover, an MSOMI of $O(n^d)$ growth can be converted into - an MSOI of dimension $d$ (with $d$ first-order parameters). -\end{proof} - -Moreover, it is decidable whether an -\subsection{Layered marble transducer} -We define a model of transducers based on marble transducers. -\section{FO model-checking of transductions with origins: SSTs and pebble transducers} -\label{sec:mc} -\subsection{Model-checking (copyfull) SSTs with origin} -\begin{itemize} -\item Origin := input position where the output position was created in a -register update. -\item FO[o] := FO[$\leq_in,\leq_out,o(x,y)$], i.e. FO over origin graphs -\end{itemize} -\begin{theorem} - Model-checking non-deterministic SST with copy against FO[o] is decidable. -\end{theorem} - -\begin{proof} - Use the backward translation theorem. -\end{proof} +\section{The case of the successor} \begin{theorem} - Model-checking $O(n^2)$ deterministic SST with copy against MSO[o] is undecidable. +\msomi with successor is equivalent to \dlin \end{theorem} \begin{proof} - See IPAD notes. +Given an \msomi, we can define a rational letter-to-letter relation which realizes the successor and from this obtain a linear bounded automaton. +From a linear bounded automaton, the next configuration relation can be defined in \mso. \end{proof} +\begin{question} -\subsection{Model-checking pebble transducers with origin} - -Origin = head position -\begin{theorem} - Model-checking non-deterministic 2-pebble transducers against FO[o] is undecidable. -\end{theorem} - -\begin{proof} - See IPAD notes. -\end{proof} +Does the model $a_1\cdots a_n\mapsto f\circ f_{a_1}\circ \cdots \circ f_{a_n}(\epsilon)$ compute \dlin ? +\end{question} +\section{Nested marble transducer} +We define a model of transducers based on marble transducers. +pebble transducer model. candidate: + layered marble transducers. A finite number of layers. a marble of layer k cannot go through another marble of layer k. However it can go through marbles of layers $<k$. + TODO: find a better name than "marble" + \begin{theorem} - Model-checking deterministic pebble transducers against FO[o] is decidable. + Any transduction defined by a nested marble transducer can be expressed as an \msomi. \end{theorem} -\begin{proof} - Use DPT = MSOI and the backward translation theorem. -\end{proof} \section{Some remaining questions} @@ -260,32 +227,12 @@ Origin = head position \subsection{Expressiveness} -\begin{itemize} - \item does $\msot\circ \msomi \subseteq \msomi$ holds ? Using Khrone - Rhodes theorem of Miko\l aj, it seems that the only difficult case - is to post-compose an \msomi with a reversible Mealy machine. Candidate composition which does not seem to be easy to - show its membership to \msomi: - $$ - even-filter \circ (1-filter \circ subsets) - $$ - where $1-filter$ only keeps the positions marked $1$ in - the results of the function $subsets$ and $even-filter$ only - keeps the even positions. It is easy to see that $(1-filter - \circ subsets)$ is \msomi. -\end{itemize} -\section{The case of the successor} + + -\begin{theorem} -\msomi with successor is equivalent to \dlin -\end{theorem} -\begin{proof} -Given an \msomi, we can define a rational letter-to-letter relation which realizes the successor and from this obtain a linear bounded automaton. -From a linear bounded automaton, the next configuration relation can be defined in \mso. -\end{proof} -Does the model $a_1\cdots a_n\mapsto f\circ f_{a_1}\circ \cdots \circ f_{a_n}(\epsilon)$ compute \dlin ? \subsection{Computational models} @@ -294,12 +241,12 @@ Does the model $a_1\cdots a_n\mapsto f\circ f_{a_1}\circ \cdots \circ f_{a_n}(\e they capture \msomi ? \item recursive programming language corresponding or being captured by \msomi ? - \item pebble transducer model. candidate: - layered marble transducers. A finite number of layers. a marble of layer k cannot go through another marble of layer k. However it can go through marbles of layers $<k$. - \item Krohn-Rhodes like decomposition eg $\mathsf{polyreg}\circ \mathsf{exp} \circ \mathsf{reg}$, with $\mathsf{exp}$ being some simple class of exponential growth function. + \item Krohn-Rhodes like decomposition \eg $\mathsf{polyreg}\circ \mathsf{exp} \circ \mathsf{reg}$, with $\mathsf{exp}$ being some simple class of exponential growth function. \end{itemize} + + \bibliography{biblio} \end{document}