From 0f22b2447fd3710bd70a56bdbd39a84f7a985b48 Mon Sep 17 00:00:00 2001 From: "nathan.lhote" <nathan.lhote@lis-lab.fr> Date: Wed, 15 Feb 2023 11:55:23 +0100 Subject: [PATCH] m --- main.tex | 27 +++++++++++++++------------ 1 file changed, 15 insertions(+), 12 deletions(-) diff --git a/main.tex b/main.tex index 839e9f4..390f482 100644 --- a/main.tex +++ b/main.tex @@ -107,7 +107,8 @@ The \emph{product} of two structures $A,B$ over a signature $\ssign$ is a struct The \emph{ordered coproduct} of a sequence of structures $A_1,\cdots, A_n$ over the same signature $\ssign$ is a structure $\bigoplus_{i\leq n} A_i$ over the signature $\ssign+\set{\sqsubseteq}$, where $\sqsubseteq$ has arity $2$. The domain of $\bigoplus_{i\leq n} A_i$ is $\bigoplus_{i\leq n} \dom_{A_i}=\bigcup_{i\leq n} \dom_{A_i}{\times}\set{i}$. The interpretation of a symbol $R$ is $\bigoplus_{i\leq n} \inter_{A_i}(R)$. The interpretation of $\sumorder$ is $\bigcup_{i\leq j\leq n}(\dom_{A_i}{\times}\set{i})\times(\dom_{A_j}{\times}\set{j})$. -The \emph{ordered product} of a sequence of structures $A_1,\cdots, A_n$ over the same signature $\ssign$ is a structure $\bigotimes_{i\leq n} A_i$ over the signature $\ssign\times\set{\sqsubseteq}$. The domain of $\bigotimes_{i\leq n} A_i$ is $\bigotimes_{i\leq n} \dom_{A_i}$. The interpretation of a symbol $R$ is $\bigoplus_{i\leq n} \inter_{A_i}(R)$. The interpretation of $\sumorder$ is $\bigcup_{i\leq j\leq n}(\dom_{A_i}{\times}\set{i})\times(\dom_{A_j}{\times}\set{j})$. +The \emph{ordered product} of a sequence of structures $A_1,\cdots, A_n$ over the same signature $\ssign$ is a structure $\bigotimes_{i\leq n} A_i$ over the signature $\ssign^1 + \ssign^{>1}\times\set{\sqsubseteq}$. The domain of $\bigotimes_{i\leq n} A_i$ is $\bigotimes_{i\leq n} \dom_{A_i}$. +The interpretation of a symbol $R$ is $\bigoplus_{i\leq n} \inter_{A_i}(R)$. The interpretation of $\sumorder$ is $\bigcup_{i\leq j\leq n}(\dom_{A_i}{\times}\set{i})\times(\dom_{A_j}{\times}\set{j})$. The \emph{powerset structure} of a structure $A$ over signature $\ssign$ is a structure $\pow A$ over signature $\ssign\uplus \set{\subseteq}$, where $\subseteq$ is a binary symbol. The domain of $\pow A$ is $\pow{\dom_A}$. The interpretation of a symbol $R$ is the set $\set{(\set{x_1},\dots,\set{x_k})\mid\ (x_1,\ldots,x_n)\in \inter_A(R)}$. The interpretation of $\subseteq$ is the actual set inclusion $\set{(x,y)\mid\ x\subseteq y\subseteq \dom_A}$. @@ -160,7 +161,7 @@ An \expreg function is a word-to-word monadic interpretation. \begin{proof} Idea: any first-order quantification $\exists x$ in $\phi$ is - replaced by the monadic quantification $\exists \overline{X}$, + replaced by the monadic quantification $\exists \bar{X}$, the atoms $R(x_1,\dots,x_k)$ are replaced by $\phi_R(\bar X_1,\ldots,\bar X_k)$, etc. \end{proof} @@ -176,15 +177,7 @@ An \expreg function is a word-to-word monadic interpretation. An \msomi can also be seen as an \foi over the powerset model. \end{remark} -\begin{question} -Does $\msot\circ \msomi \subseteq \msomi$ hold? Using Krohn-Rhodes theorem of Miko\l aj, it seems that the only difficult case - is to post-compose an \msomi with a reversible Mealy machine. In other words the problem can be formulated as: does $\rev\circ \msomi \subseteq \msomi$ hold? -\end{question} - -\begin{question} -Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O \big( |u|+|f(u)|\big)$ ? -\end{question} \subsection{Closure properties} \subsubsection{Postcomposition by \foi} @@ -365,9 +358,19 @@ Does $\ipt\subseteq \mt\circ\msot$ hold? \section{Some remaining questions} -\subsection{Expressiveness} +\subsection{Closure} +\begin{question} +Does $\msot\circ \msomi \subseteq \msomi$ hold? Using Krohn-Rhodes theorem of Miko\l aj, it seems that the only difficult case + is to post-compose an \msomi with a reversible Mealy machine. In other words the problem can be formulated as: does $\rev\circ \msomi \subseteq \msomi$ hold? +\end{question} +It works for commutative groups. +\subsection{Computing image} + +\begin{question} +Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O \big( |u|+|f(u)|\big)$ ? +\end{question} @@ -380,7 +383,7 @@ Does $\ipt\subseteq \mt\circ\msot$ hold? \begin{itemize} \item what about \mtt ? They have doubly-exponential growth, but do they capture \msomi ? - \item recursive programming language corresponding or being + \item recursive programming language corresponding to or being captured by \msomi ? \item Krohn-Rhodes like decomposition \eg $\msoi\circ \mathsf{exp} \circ \msot$, with $\mathsf{exp}$ being some simple class of exponential growth function. \end{itemize} -- GitLab