Select Git revision
__init__.py
-
Luc Giffon authored
use these convolutions on evaluation on the background set fix cluger and executioner update omniglot dataset and dataset classes add vinyals transformer improve lecun and vgg transformer TODO: gather vinyals, lecun and vgg19 transformers into kerasmodel transformer
Luc Giffon authoreduse these convolutions on evaluation on the background set fix cluger and executioner update omniglot dataset and dataset classes add vinyals transformer improve lecun and vgg transformer TODO: gather vinyals, lecun and vgg19 transformers into kerasmodel transformer
plot_usecase_exampleMuCuBo.py 1.83 KiB
# -*- coding: utf-8 -*-
"""
================
Use Case MuCumBo
================
Use case for all classifier of multimodallearn MuCumBo
multi class digit from sklearn, multivue
- vue 0 digit data (color of sklearn)
- vue 1 gradiant of image in first direction
- vue 2 gradiant of image in second direction
"""
from __future__ import absolute_import
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from multimodal.datasets.base import load_dict, save_dict
from multimodal.tests.data.get_dataset_path import get_dataset_path
from multimodal.datasets.data_sample import MultiModalArray
from multimodal.boosting.cumbo import MuCumboClassifier
from usecase_function import plot_subplot
if __name__ == '__main__':
# file = get_dataset_path("digit_histogram.npy")
file = get_dataset_path("digit_col_grad.npy")
y = np.load(get_dataset_path("digit_y.npy"))
base_estimator = DecisionTreeClassifier(max_depth=4)
dic_digit = load_dict(file)
XX =MultiModalArray(dic_digit)
X_train, X_test, y_train, y_test = train_test_split(XX, y)
est3 = MuCumboClassifier(base_estimator=base_estimator).fit(X_train, y_train)
y_pred3 = est3.predict(X_test)
y_pred33 = est3.predict(X_train)
print("result of MuCumboClassifier on digit ")
result3 = np.mean(y_pred3.ravel() == y_test.ravel()) * 100
print(result3)
fig = plt.figure(figsize=(12., 11.))
fig.suptitle("MuCumbo: result" + str(result3), fontsize=16)
plot_subplot(X_train, y_train, y_pred33 ,0, (4, 1, 1), "train vue 0" )
plot_subplot(X_test, y_test,y_pred3 , 0, (4, 1, 2), "test vue 0" )
plot_subplot(X_test, y_test, y_pred3,1, (4, 1, 3), "test vue 1" )
plot_subplot(X_test, y_test,y_pred3, 2, (4, 1, 4), "test vue 2" )
# plt.legend()
plt.show()