import tensorflow as tf import numpy as np from sklearn.preprocessing import LabelBinarizer import skluc.mldatasets as dataset from fasfood_layer import fast_food import matplotlib.pyplot as plt IMAGE_SIZE = 24 enc = LabelBinarizer() cifar = dataset.Cifar10Dataset() cifar_d = cifar.load() cifar_d = cifar.to_image() X_train, Y_train = cifar_d["train"] X_test, Y_test = cifar_d["test"] X_train = np.array(X_train / 255) enc.fit(Y_train) Y_train = np.array(enc.transform(Y_train)) X_test = np.array(X_test / 255) Y_test = np.array(enc.transform(Y_test)) X_train = X_train.astype(np.float32) permut = np.random.permutation(X_train.shape[0]) val_size = 5000 X_val = X_train[permut[:val_size]] X_train = X_train[permut[val_size:]] Y_val = Y_train[permut[:val_size]] Y_train = Y_train[permut[val_size:]] X_test = X_test.astype(np.float32) Y_train = Y_train.astype(np.float32) Y_test = Y_test.astype(np.float32) def distorded_inputs(image_tensor): height = IMAGE_SIZE width = IMAGE_SIZE distorted_image = tf.random_crop(image_tensor, [height, width, 3]) distorted_image = tf.image.random_flip_left_right(distorted_image) distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) float_image = tf.image.per_image_standardization(distorted_image) return float_image # todo terminer ce programme if __name__ == '__main__': SIGMA = 5.0 print("Sigma = {}".format(SIGMA)) with tf.Graph().as_default(): output_dim = Y_train.shape[1] input_dim = X_train.shape[1:] x_image = tf.placeholder(tf.float32, shape=[None, *input_dim], name="x_image") y_ = tf.placeholder(tf.float32, shape=[None, output_dim], name="labels") tf.summary.image("cifarimage", x_image, max_outputs=10) dist_x_images = distorded_inputs(x_image) tf.summary.image("cifarimagedistorded", dist_x_images, max_outputs=10) # out = fast_food(x_image, SIGMA) merged_summary = tf.summary.merge_all() init = tf.global_variables_initializer() sess = tf.Session() summary_writer = tf.summary.FileWriter("cifar") feed_dict = {x_image: X_train[:10], y_: Y_train[:10]} summary = sess.run([merged_summary], feed_dict=feed_dict) summary_writer.add_summary(summary[0]) summary_writer.close()