diff --git a/.gitignore b/.gitignore
index 8cd80a983f6bcdd3f670d7c0e6d2c6bc58c276a0..328ca8326457062a6ce149f6fc5ee5695bb08e09 100644
--- a/.gitignore
+++ b/.gitignore
@@ -3,6 +3,7 @@
 MNIST_data/
 *.png
 *arrayparam*
+*debug*
 
 # Byte-compiled / optimized / DLL files
 __pycache__/
diff --git a/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py b/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py
index c40386f2524bc613efd1c0b96129685ba4fb7af7..978978b94b39a2c7bdeb2509350692fed240b60e 100644
--- a/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py
+++ b/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py
@@ -9,263 +9,246 @@ from skluc.main.utils import logger
 
 matplotlib.rcParams.update({'font.size': 14})
 
-pd.set_option('display.width', 1000)
-
-DAT = ["SVHN"]
-DIR = ["/home/luc/Resultats/Deepstrom/SVHN/june_2018/svhn_few_data_debug_plus_dropout"]
-
-
-for h in range(len(DIR)):
-    DATANAME = DAT[h]
-    DIRNAME = DIR[h]
-
-    FILENAME = "gathered_results.csv"
-
-    min_acc = 0.00
-    max_acc = 1.05
-    # max_acc = 1.0
-    linewidth = 0.9
-    output_conv_dim = 512
-    nb_classes = 10
-
-    real_nys_marker = "s"
-
-    learned_nys_marker = "x"
-
-    linearity_color = "g"
-
-    dense_marker = "v"
-    dense_color = "r"
-
-    deepfried_marker = "8"
-    deepfried_color = "b"
-
-    d_translate_kernel = {
-        "linear": "Linear",
-        "chi2_cpd": "Chi2",
-        "rbf": "Gaussian"
-    }
-
-    if __name__ == '__main__':
-        filepath = os.path.join(DIRNAME, FILENAME)
-        field_names = ["method_name",
-                       "accuracy_val",
-                       "accuracy_test",
-                       "runtime",
-                       "number_epoch",
-                       "batch_size",
-                       "repr_dim",
-                       "two_layers_dense",
-                       "kernel_deepstrom",
-                       "gamma_kernel",
-                       "constante_sigmoid",
-                       "nb_layer_deepfried",
-                       "subsample_size",
-                       "validation_size",
-                       "seed",
-                       "non_linearity",
-                       "real_nystrom",
-                       "repr_quality",
-                       "train_size",
-                       "dropout"
-                       ]
-
-        df = pd.read_csv(filepath, names=field_names)
-        # df = df[df["accuracy_val"] != 'None']
-        df = df.apply(pd.to_numeric, errors="ignore")
-        method_names = set(df["method_name"].values)
-        kernel_names = set(df["kernel_deepstrom"].values)
-        kernel_names.remove("None")
-        # kernel_names.remove("laplacian")
-        repr_dim = set(df["repr_dim"].values)
-        repr_dim.remove("None")  # dtype: str
-        # repr_dim.remove("16")
-        nys_size = set(df["subsample_size"].values)
-        nys_size.remove("None")
-        nb_layers_deepfried = set(df["nb_layer_deepfried"].values)
-        nb_layers_deepfried.remove("None")
-        seed_values = set(df["seed"].values)
-        batch_size = 128
-        train_sizes = set(df["train_size"])
-        dropout_values = set(df["dropout"].values)
-        sigma_values = set(df["gamma_kernel"].values)
-        sigma_values.remove("None")
-        sigma_values = list(sigma_values)
-        logger.debug("Nystrom possible sizes are: {}".format(nys_size))
-        logger.debug("Kernel functions are: {}".format(kernel_names))
-        logger.debug("Compared network types are: {}".format(method_names))
-        logger.debug("Tested representation dimension are: {}".format(repr_dim))
-
-        means_deepstrom = {}
-
-        for t_size in sorted(list(train_sizes)):
-            df_tsize = df[df["train_size"] == t_size]
-            for drop_val in dropout_values:
-                if int(drop_val) != 1:
-                    continue
-                df_drop = df_tsize[df_tsize["dropout"] == drop_val]
-
-                # plot deepstrom
-                # ==============
-                df_deepstrom = df_drop[df_drop["method_name"] == "deepstrom"]
-                df_deepstrom["subsample_size"] = df_deepstrom["subsample_size"].astype(np.int)
-                df_deepstrom_sort = df_deepstrom.sort_values(by=["subsample_size"])
-                for i, k_name in enumerate(sorted(kernel_names)):
-                    if k_name != "rbf":
-                        df_deepstrom_kernels = [df_deepstrom_sort[df_deepstrom_sort["kernel_deepstrom"] == k_name]]
-                    else:
-                        df_deepstrom_kernels = []
-                        df_deepstrom_kernel_tmp = df_deepstrom_sort[df_deepstrom_sort["kernel_deepstrom"] == k_name]
-                        for sig_val in sigma_values:
-                            if float(sig_val) != 0.1:
-                                continue
-                            df_deepstrom_kernels.append(
-                                df_deepstrom_kernel_tmp[df_deepstrom_kernel_tmp["gamma_kernel"] == sig_val])
-
-                    for j, df_deepstrom_kernel in enumerate(df_deepstrom_kernels):
-                        f, ax = plt.subplots()
-                        # non_lin_dfs = {
-                        #     "linear": df_deepstrom_kernel[df_deepstrom_kernel["non_linearity"] == "None"],
-                        # }
-                        # get the results of learned nystrom
-                        df_deepstrom_kernel_w = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"] == False]
-                        np_deepstrom_kernel_w_mean_accuracy_test = np.mean(np.array([
-                            list(df_deepstrom_kernel_w[df_deepstrom_kernel_w["seed"] == seed_v]["accuracy_test"]) for
-                            seed_v in seed_values
-                        ]), axis=0)
-                        np_deepstrom_kernel_w_std_accuracy_test = np.std(np.array(
-                            [list(df_deepstrom_kernel_w[df_deepstrom_kernel_w["seed"] == seed_v]["accuracy_test"]) for
-                             seed_v in
-                             seed_values]), axis=0)
-                        np_param_nbr_deepstrom_kernel_w = (
-                                np.square(np.array(sorted(set(df_deepstrom_kernel_w["subsample_size"])))) +  # m x m
-                                np.array(
-                                    sorted(set(df_deepstrom_kernel_w["subsample_size"]))) * output_conv_dim +  # m x d
-                                np.array(
-                                    sorted(list(set(df_deepstrom_kernel_w["subsample_size"])))) * nb_classes)  # m x c
-
-                        ax.errorbar(np_param_nbr_deepstrom_kernel_w,
-                                    np_deepstrom_kernel_w_mean_accuracy_test,
-                                    np_deepstrom_kernel_w_std_accuracy_test,
-                                    marker=learned_nys_marker, color=linearity_color,
-                                    label="Adaptative Deepström",
-                                     capsize=3)
-
-                        # get the results of vanilla nystrom
-                        df_deepstrom_kernel_k = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"]]
-                        if len(df_deepstrom_kernel_k):
-                            np_deepstrom_kernel_k_mean_accuracy_test = np.mean(
-                                np.array([list(
-                                    df_deepstrom_kernel_k[df_deepstrom_kernel_k["seed"] == seed_v]["accuracy_test"]) for
-                                          seed_v in
-                                          seed_values]), axis=0)
-                            np_deepstrom_kernel_k_std_accuracy_test = np.std(
-                                np.array([list(
-                                    df_deepstrom_kernel_k[df_deepstrom_kernel_k["seed"] == seed_v]["accuracy_test"]) for
-                                          seed_v in
-                                          seed_values]), axis=0)
-
-                            np_param_nbr_deepstrom_kernel_k = (
-                                    np.square(np.array(sorted(set(df_deepstrom_kernel_k["subsample_size"])))) +  # m x m
-                                    np.array(sorted(
-                                        set(df_deepstrom_kernel_k["subsample_size"]))) * output_conv_dim +  # m x d
-                                    np.array(sorted(
-                                        list(set(df_deepstrom_kernel_k["subsample_size"])))) * nb_classes)  # m x c
-
-                            ax.errorbar(np_param_nbr_deepstrom_kernel_k,
-                                        np_deepstrom_kernel_k_mean_accuracy_test,
-                                        np_deepstrom_kernel_k_std_accuracy_test,
-                                        marker=real_nys_marker, color=linearity_color,
-                                        label="Deepström",
-                                         capsize=3)
-
-                        # plot dense
-                        # ==========
-                        df_dense = df_drop[df_drop["method_name"] == "dense"]
-                        df_dense = df_dense[df_dense["train_size"] == t_size]
-                        df_dense["repr_dim"] = df_dense["repr_dim"].astype(np.int)
-                        df_dense = df_dense.sort_values(by=["repr_dim"])
-                        np_dense_mean_accuracy_test = np.mean(
-                            np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in
-                                      seed_values]), axis=0)
-                        np_dense_std_accuracy_test = np.std(
-                            np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in
-                                      seed_values]), axis=0)
-                        ax.errorbar(
-                            np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * output_conv_dim +
-                            np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * nb_classes,
-                            np_dense_mean_accuracy_test,
-                            np_dense_std_accuracy_test,
-                            color=dense_color,
-                            marker=dense_marker,
-                            label="Fully Connected", capsize=3)
-
-                        # plot deepfried
-                        # ==============
-                        df_deepfried = df_drop[df_drop["method_name"] == "deepfriedconvnet"]
-                        np_deepfried_mean_accuracy_test = []
-                        np_deepfried_std_accuracy_test = []
-                        for l_nb in sorted(nb_layers_deepfried):
-                            df_deepfried_stack = df_deepfried[df_deepfried["nb_layer_deepfried"] == l_nb]
-                            np_deepfried_mean_accuracy_test.append(np.mean(df_deepfried_stack["accuracy_test"]))
-                            np_deepfried_std_accuracy_test.append(np.std(df_deepfried_stack["accuracy_test"]))
-
-                        ax.errorbar([(output_conv_dim * 3 + output_conv_dim * nb_classes) * i for i in [1]],
-                                    np_deepfried_mean_accuracy_test,
-                                    np_deepfried_std_accuracy_test,
-                                    color=deepfried_color,
-                                    marker=deepfried_marker,
-
-                                    label="Adaptative DeepFriedConvnet", capsize=3)
-                        ax.set_ylim(min_acc, max_acc)
-                        ax.set_ylabel("Accuracy")
-                        ax.set_xticks([1e4, 1e5, 1e6])
-                        # if i == 2:
-                        # ax.set_xlabel("# Parameters")
-                        ax.set_xlabel("# Parameters")
-                        ax.legend(bbox_to_anchor=(0.5, -0.20), loc="upper center", ncol=2)
-                        ax.set_xticklabels([1e4, 1e5, 1e6])
-                        # else:
-                        #     ax.set_xticklabels([])
-                        ax.set_xscale("symlog")
-
-                        ax_twin = ax.twiny()
-                        ax_twin.set_xscale("symlog")
-                        ax_twin.set_xlim(ax.get_xlim())
-                        ax_twin.set_xticks(np_param_nbr_deepstrom_kernel_w)
-
-                        # if i == 0:
-                        ax_twin.set_xlabel("Subsample Size")
-                        ax.set_title(
-                            "{} Kernel - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size),
-                            y=1.2)
-                        ax_twin.set_xticklabels(sorted(set(df_deepstrom_kernel_w["subsample_size"])))
-                        # else:
-                        #     ax.set_title("Noyau {} - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size))
-                        #     ax_twin.set_xticklabels([])
-
-                        f.set_size_inches(8, 6)
-                        f.tight_layout()
-                        f.subplots_adjust(bottom=0.3)
-                        # f.show()
-                        # exit()
-                        # learnable: change legend
-                        # ODIR = [
-                        #     "/home/luc/PycharmProjects/deepFriedConvnets/main/experiments/graph_drawing/paper/svhn/few_data/parameters/dropout_{}".format(
-                        #         str(drop_val).replace(".", "-"))]
-                        # out_dir_path = ODIR[h]
-
-
-                        if k_name != "rbf":
-                            out_name = "acc_param_tsize_{}_{}_{}".format(t_size, str(drop_val).replace(".", "-"),
-                                                                         k_name)
-                        else:
-                            out_name = "acc_param_tsize_{}_{}_{}_{}".format(t_size, str(drop_val).replace(".", "-"),
-                                                                            k_name,
-                                                                            str(sigma_values[j]).replace(".", "-"))
-
-                        base_out_dir = os.path.join(os.path.abspath(__file__.split(".")[0]), "images")
-                        pathlib.Path(base_out_dir).mkdir(parents=True, exist_ok=True)
-                        out_path = os.path.join(base_out_dir, out_name)
-                        logger.debug(out_path)
-                        f.savefig(out_path)
+# pd.set_option('display.width', 1000)
+pd.set_option('display.expand_frame_repr', False)
+
+# DAT = ["SVHN"]
+# DIR = ["/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data"]
+
+
+DATANAME = "SVHN"
+DIRNAME = "/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data"
+
+FILENAME = "gathered_results_all.csv"
+
+min_acc = 0.00
+max_acc = 1.05
+# max_acc = 1.0
+linewidth = 0.9
+output_conv_dim = 512
+nb_classes = 10
+
+real_nys_marker = "s"
+
+learned_nys_marker = "x"
+
+linearity_color = "g"
+
+dense_marker = "v"
+dense_color = "r"
+
+deepfried_marker = "8"
+deepfried_color = "b"
+
+d_translate_kernel = {
+    "linear": "Linear",
+    "chi2_cpd": "Chi2",
+    "rbf": "Gaussian"
+}
+
+if __name__ == '__main__':
+    filepath = os.path.join(DIRNAME, FILENAME)
+    field_names = ["method_name",
+                   "accuracy_val",
+                   "accuracy_test",
+                   "runtime_train",
+                   "runtime_val",
+                   "runtime_test",
+                   "number_epoch",
+                   "batch_size",
+                   "repr_dim",
+                   "second_layer_size",
+                   "kernel_deepstrom",
+                   "gamma_kernel",
+                   "constante_sigmoid",
+                   "nb_layer_deepfried",
+                   "subsample_size",
+                   "validation_size",
+                   "seed",
+                   "act",
+                   "non_linearity",
+                   "real_nystrom",
+                   "repr_quality",
+                   "train_size",
+                   "dropout",
+                   "dataset",
+                   "real_deepfried"
+                   ]
+
+    df = pd.read_csv(filepath, names=field_names)
+    df = df[df["accuracy_val"] != 'None']
+    df = df.apply(pd.to_numeric, errors="ignore")
+    df = df.drop_duplicates()
+    method_names = set(df["method_name"].values)
+    kernel_names = set(df["kernel_deepstrom"].values)
+    kernel_names.remove("None")
+    # kernel_names.remove("laplacian")
+    repr_dim = set(df["repr_dim"].values)
+    repr_dim.remove("None")  # dtype: str
+    # repr_dim.remove("16")
+    nys_size = set(df["subsample_size"].values)
+    nys_size.remove("None")
+    nb_layers_deepfried = set(df["nb_layer_deepfried"].values)
+    nb_layers_deepfried.remove("None")
+    seed_values = set(df["seed"].values)
+    batch_size = 128
+    train_sizes = set(df["train_size"])
+
+    cut_layers = set(df["repr_quality"].values)
+
+    logger.debug("Nystrom possible sizes are: {}".format(nys_size))
+    logger.debug("Kernel functions are: {}".format(kernel_names))
+    logger.debug("Compared network types are: {}".format(method_names))
+    logger.debug("Tested representation dimension are: {}".format(repr_dim))
+
+    means_deepstrom = {}
+
+    for t_size in sorted(list(train_sizes)):
+        df_tsize = df[df["train_size"] == t_size]
+
+        for cut_layer in cut_layers:
+            df_cut_layer = df_tsize[df_tsize["repr_quality"] == cut_layer]
+
+            # plot deepstrom
+            # ==============
+            df_deepstrom = df_cut_layer[df_cut_layer["method_name"] == "deepstrom"]
+            df_deepstrom["subsample_size"] = df_deepstrom["subsample_size"].astype(np.int)
+            df_deepstrom_sort = df_deepstrom.sort_values(by=["subsample_size"])
+            for k_name in sorted(kernel_names):
+                df_deepstrom_kernel = df_deepstrom_sort[df_deepstrom_sort["kernel_deepstrom"] == k_name]
+
+                f, ax = plt.subplots()
+
+                # get the results of learned nystrom
+                df_deepstrom_kernel_w = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"] == False]
+                all_accs_w = np.array([
+                    list(df_deepstrom_kernel_w[df_deepstrom_kernel_w["seed"] == seed_v]["accuracy_test"]) for
+                    seed_v in seed_values
+                ])
+                np_deepstrom_kernel_w_mean_accuracy_test = np.mean(all_accs_w, axis=0)
+                np_deepstrom_kernel_w_std_accuracy_test = np.std(all_accs_w, axis=0)
+                np_param_nbr_deepstrom_kernel_w = (
+                        np.square(np.array(sorted(set(df_deepstrom_kernel_w["subsample_size"])))) +  # m x m
+                        np.array(
+                            sorted(set(df_deepstrom_kernel_w["subsample_size"]))) * output_conv_dim +  # m x d
+                        np.array(
+                            sorted(list(set(df_deepstrom_kernel_w["subsample_size"])))) * nb_classes)  # m x c
+
+                ax.errorbar(np_param_nbr_deepstrom_kernel_w,
+                            np_deepstrom_kernel_w_mean_accuracy_test,
+                            np_deepstrom_kernel_w_std_accuracy_test,
+                            marker=learned_nys_marker, color=linearity_color,
+                            label="Adaptative Deepström",
+                            capsize=3)
+
+                # get the results of vanilla nystrom
+                df_deepstrom_kernel_k = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"]]
+                if len(df_deepstrom_kernel_k):
+                    all_accs_k = np.array([
+                        list(df_deepstrom_kernel_k[df_deepstrom_kernel_k["seed"] == seed_v]["accuracy_test"]) for
+                        seed_v in seed_values
+                    ])
+                    np_deepstrom_kernel_k_mean_accuracy_test = np.mean(all_accs_k, axis=0)
+                    np_deepstrom_kernel_k_std_accuracy_test = np.std(all_accs_k, axis=0)
+
+                    np_param_nbr_deepstrom_kernel_k = (
+                            np.square(np.array(sorted(set(df_deepstrom_kernel_k["subsample_size"])))) +  # m x m
+                            np.array(sorted(
+                                set(df_deepstrom_kernel_k["subsample_size"]))) * output_conv_dim +  # m x d
+                            np.array(sorted(
+                                list(set(df_deepstrom_kernel_k["subsample_size"])))) * nb_classes)  # m x c
+
+                    ax.errorbar(np_param_nbr_deepstrom_kernel_k,
+                                np_deepstrom_kernel_k_mean_accuracy_test,
+                                np_deepstrom_kernel_k_std_accuracy_test,
+                                marker=real_nys_marker, color=linearity_color,
+                                label="Deepström",
+                                capsize=3)
+
+                # plot dense
+                # ==========
+                df_dense = df_cut_layer[df_cut_layer["method_name"] == "dense"]
+                df_dense = df_dense[df_dense["train_size"] == t_size]
+                df_dense["repr_dim"] = df_dense["repr_dim"].astype(np.int)
+                df_dense = df_dense.sort_values(by=["repr_dim"])
+                np_dense_mean_accuracy_test = np.mean(
+                    np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in
+                              seed_values]), axis=0)
+                np_dense_std_accuracy_test = np.std(
+                    np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in
+                              seed_values]), axis=0)
+                ax.errorbar(
+                    np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * output_conv_dim +
+                    np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * nb_classes,
+                    np_dense_mean_accuracy_test,
+                    np_dense_std_accuracy_test,
+                    color=dense_color,
+                    marker=dense_marker,
+                    label="Fully Connected", capsize=3)
+
+                # # plot deepfried
+                # # ==============
+                df_deepfried = df_cut_layer[df_cut_layer["method_name"] == "deepfriedconvnet"]
+                np_deepfried_mean_accuracy_test = []
+                np_deepfried_std_accuracy_test = []
+                for l_nb in sorted(nb_layers_deepfried):
+                    df_deepfried_stack = df_deepfried[df_deepfried["nb_layer_deepfried"] == l_nb]
+                    if len(df_deepfried_stack):
+                        np_deepfried_mean_accuracy_test.append(np.mean(df_deepfried_stack["accuracy_test"]))
+                        np_deepfried_std_accuracy_test.append(np.std(df_deepfried_stack["accuracy_test"]))
+
+                nb_param_vals = [(output_conv_dim * 3 + output_conv_dim * nb_classes) * int(i) for i in sorted(set(df_deepfried["nb_layer_deepfried"].values))]
+                ax.errorbar(nb_param_vals,
+                            np_deepfried_mean_accuracy_test,
+                            np_deepfried_std_accuracy_test,
+                            color=deepfried_color,
+                            marker=deepfried_marker,
+                            label="Adaptative DeepFriedConvnet", capsize=3)
+
+
+                ax.set_ylim(min_acc, max_acc)
+                ax.set_ylabel("Accuracy")
+                ax.set_xticks([1e4, 1e5, 1e6])
+                # if i == 2:
+                # ax.set_xlabel("# Parameters")
+                ax.set_xlabel("# Parameters")
+                ax.legend(bbox_to_anchor=(0.5, -0.20), loc="upper center", ncol=2)
+                ax.set_xticklabels([1e4, 1e5, 1e6])
+                # else:
+                #     ax.set_xticklabels([])
+                ax.set_xscale("symlog")
+
+                ax_twin = ax.twiny()
+                ax_twin.set_xscale("symlog")
+                ax_twin.set_xlim(ax.get_xlim())
+                ax_twin.set_xticks(np_param_nbr_deepstrom_kernel_w)
+
+                # if i == 0:
+                ax_twin.set_xlabel("Subsample Size")
+                ax.set_title(
+                    "{} Kernel - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size),
+                    y=1.2)
+                ax_twin.set_xticklabels(sorted(set(df_deepstrom_kernel_w["subsample_size"])))
+                # else:
+                #     ax.set_title("Noyau {} - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size))
+                #     ax_twin.set_xticklabels([])
+
+                f.set_size_inches(8, 6)
+                f.tight_layout()
+                f.subplots_adjust(bottom=0.3)
+                # f.show()
+                # exit()
+                # learnable: change legend
+                # ODIR = [
+                #     "/home/luc/PycharmProjects/deepFriedConvnets/main/experiments/graph_drawing/paper/svhn/few_data/parameters/dropout_{}".format(
+                #         str(drop_val).replace(".", "-"))]
+                # out_dir_path = ODIR[h]
+
+
+                out_name = "acc_param_tsize_{}_{}_{}".format(t_size, cut_layer, k_name)
+
+                base_out_dir = os.path.join(os.path.abspath(__file__.split(".")[0]), "images")
+                pathlib.Path(base_out_dir).mkdir(parents=True, exist_ok=True)
+                out_path = os.path.join(base_out_dir, out_name)
+                logger.debug(out_path)
+                f.savefig(out_path)
diff --git a/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py b/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py
index 978978b94b39a2c7bdeb2509350692fed240b60e..3ca6a3592a699ad5824b15fc5536fa28f3f9da71 100644
--- a/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py
+++ b/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py
@@ -13,13 +13,13 @@ matplotlib.rcParams.update({'font.size': 14})
 pd.set_option('display.expand_frame_repr', False)
 
 # DAT = ["SVHN"]
-# DIR = ["/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data"]
+# DIR = ["/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data_cifar100_from_cifar10"]
 
 
-DATANAME = "SVHN"
+DATANAME = "CIFAR100"
 DIRNAME = "/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data"
 
-FILENAME = "gathered_results_all.csv"
+FILENAME = "gathered_results.csv"
 
 min_acc = 0.00
 max_acc = 1.05
@@ -72,7 +72,8 @@ if __name__ == '__main__':
                    "train_size",
                    "dropout",
                    "dataset",
-                   "real_deepfried"
+                   "real_deepfried",
+                   "weights"
                    ]
 
     df = pd.read_csv(filepath, names=field_names)
diff --git a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml
index 2224de04489bc0d546da6f22f2de037266eced93..4dc38842bd4650815b3e1df3502179acc7ec1b93 100644
--- a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml
+++ b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml
@@ -1,22 +1,18 @@
 all:
   dense:
   deepfried:
-  deepstrom_real_gamma:
-  deepstrom_real_no_kernel_param:
-  deepstrom_learned_gamma:
-  deepstrom_learned_no_kernel_param:
+  deepstrom:
 
 base:
-  epoch_numbers: {"-e": [50]}
+  epoch_numbers: {"-e": [100]}
   batch_sizes: {"-s": [64]}
   val_size: {"-v": [10000]}
-  seed: {"-a": "range(5)"}
-  dropout: {"-d": [0.5, 0.7, 1.0]}
+  seed: {"-a": "range(10)"}
+  quiet: ["-q"]
   data_size: {"-t":[20, 50, 100, 200, 500, 1000, 2000]}
   dataset: ["--svhn"]
-
-gammavalue:
-  gamma: {"-g": [0.0001, 0.001, 0.0025145440260884045, 0.01, 0.1]}
+  weights: {"-W": ["cifar100"]}
+  cut_layer: {"-B": ["block3_pool", "block5_conv4", "block5_pool"]}
 
 dense:
   network: ["dense"]
@@ -26,36 +22,12 @@ dense:
 deepfried:
   network: ["deepfriedconvnet"]
   base:
-  gammavalue:
-  nbstacks: {"-N": [1]}
+  nbstacks: {"-N": [1, 3, 5, 7]}
 
-deepstrom_base:
+deepstrom:
   network: ["deepstrom"]
   base:
+  real_nys: ["-r", ""]
   nys_size: {"-m": [16, 64, 128, 256, 512, 1024]}
-
-deepstrom_real:
-  deepstrom_base:
-  real_nys: ["-r"]
-
-deepstrom_real_gamma:
-  deepstrom_real:
-  gammavalue:
-  kernel: ["-R"]
-
-deepstrom_real_no_kernel_param:
-  deepstrom_real:
-  kernel: ["-C", "-L"]
-
-deepstrom_learned:
-  deepstrom_base:
-
-deepstrom_learned_gamma:
-  deepstrom_learned:
-  gammavalue:
-  kernel: ["-R"]
-
-deepstrom_learned_no_kernel_param:
-  deepstrom_learned:
-  kernel: ["-C", "-L"]
+  kernel: ["-C", "-L", "-R"]
 
diff --git a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml
index 4dc38842bd4650815b3e1df3502179acc7ec1b93..744e7443fb60e0c0d4aac1f2ca35cac9abfd2a5b 100644
--- a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml
+++ b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml
@@ -10,8 +10,8 @@ base:
   seed: {"-a": "range(10)"}
   quiet: ["-q"]
   data_size: {"-t":[20, 50, 100, 200, 500, 1000, 2000]}
-  dataset: ["--svhn"]
-  weights: {"-W": ["cifar100"]}
+  dataset: ["--cifar100"]
+  weights: {"-W": ["cifar10"]}
   cut_layer: {"-B": ["block3_pool", "block5_conv4", "block5_pool"]}
 
 dense: