diff --git a/.gitignore b/.gitignore index 8cd80a983f6bcdd3f670d7c0e6d2c6bc58c276a0..328ca8326457062a6ce149f6fc5ee5695bb08e09 100644 --- a/.gitignore +++ b/.gitignore @@ -3,6 +3,7 @@ MNIST_data/ *.png *arrayparam* +*debug* # Byte-compiled / optimized / DLL files __pycache__/ diff --git a/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py b/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py index c40386f2524bc613efd1c0b96129685ba4fb7af7..978978b94b39a2c7bdeb2509350692fed240b60e 100644 --- a/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py +++ b/main/experiments/graph_drawing/till_october_2018/transfert_few_data/vgg_svhn_from_cifar100_deepstrom_few_data.py @@ -9,263 +9,246 @@ from skluc.main.utils import logger matplotlib.rcParams.update({'font.size': 14}) -pd.set_option('display.width', 1000) - -DAT = ["SVHN"] -DIR = ["/home/luc/Resultats/Deepstrom/SVHN/june_2018/svhn_few_data_debug_plus_dropout"] - - -for h in range(len(DIR)): - DATANAME = DAT[h] - DIRNAME = DIR[h] - - FILENAME = "gathered_results.csv" - - min_acc = 0.00 - max_acc = 1.05 - # max_acc = 1.0 - linewidth = 0.9 - output_conv_dim = 512 - nb_classes = 10 - - real_nys_marker = "s" - - learned_nys_marker = "x" - - linearity_color = "g" - - dense_marker = "v" - dense_color = "r" - - deepfried_marker = "8" - deepfried_color = "b" - - d_translate_kernel = { - "linear": "Linear", - "chi2_cpd": "Chi2", - "rbf": "Gaussian" - } - - if __name__ == '__main__': - filepath = os.path.join(DIRNAME, FILENAME) - field_names = ["method_name", - "accuracy_val", - "accuracy_test", - "runtime", - "number_epoch", - "batch_size", - "repr_dim", - "two_layers_dense", - "kernel_deepstrom", - "gamma_kernel", - "constante_sigmoid", - "nb_layer_deepfried", - "subsample_size", - "validation_size", - "seed", - "non_linearity", - "real_nystrom", - "repr_quality", - "train_size", - "dropout" - ] - - df = pd.read_csv(filepath, names=field_names) - # df = df[df["accuracy_val"] != 'None'] - df = df.apply(pd.to_numeric, errors="ignore") - method_names = set(df["method_name"].values) - kernel_names = set(df["kernel_deepstrom"].values) - kernel_names.remove("None") - # kernel_names.remove("laplacian") - repr_dim = set(df["repr_dim"].values) - repr_dim.remove("None") # dtype: str - # repr_dim.remove("16") - nys_size = set(df["subsample_size"].values) - nys_size.remove("None") - nb_layers_deepfried = set(df["nb_layer_deepfried"].values) - nb_layers_deepfried.remove("None") - seed_values = set(df["seed"].values) - batch_size = 128 - train_sizes = set(df["train_size"]) - dropout_values = set(df["dropout"].values) - sigma_values = set(df["gamma_kernel"].values) - sigma_values.remove("None") - sigma_values = list(sigma_values) - logger.debug("Nystrom possible sizes are: {}".format(nys_size)) - logger.debug("Kernel functions are: {}".format(kernel_names)) - logger.debug("Compared network types are: {}".format(method_names)) - logger.debug("Tested representation dimension are: {}".format(repr_dim)) - - means_deepstrom = {} - - for t_size in sorted(list(train_sizes)): - df_tsize = df[df["train_size"] == t_size] - for drop_val in dropout_values: - if int(drop_val) != 1: - continue - df_drop = df_tsize[df_tsize["dropout"] == drop_val] - - # plot deepstrom - # ============== - df_deepstrom = df_drop[df_drop["method_name"] == "deepstrom"] - df_deepstrom["subsample_size"] = df_deepstrom["subsample_size"].astype(np.int) - df_deepstrom_sort = df_deepstrom.sort_values(by=["subsample_size"]) - for i, k_name in enumerate(sorted(kernel_names)): - if k_name != "rbf": - df_deepstrom_kernels = [df_deepstrom_sort[df_deepstrom_sort["kernel_deepstrom"] == k_name]] - else: - df_deepstrom_kernels = [] - df_deepstrom_kernel_tmp = df_deepstrom_sort[df_deepstrom_sort["kernel_deepstrom"] == k_name] - for sig_val in sigma_values: - if float(sig_val) != 0.1: - continue - df_deepstrom_kernels.append( - df_deepstrom_kernel_tmp[df_deepstrom_kernel_tmp["gamma_kernel"] == sig_val]) - - for j, df_deepstrom_kernel in enumerate(df_deepstrom_kernels): - f, ax = plt.subplots() - # non_lin_dfs = { - # "linear": df_deepstrom_kernel[df_deepstrom_kernel["non_linearity"] == "None"], - # } - # get the results of learned nystrom - df_deepstrom_kernel_w = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"] == False] - np_deepstrom_kernel_w_mean_accuracy_test = np.mean(np.array([ - list(df_deepstrom_kernel_w[df_deepstrom_kernel_w["seed"] == seed_v]["accuracy_test"]) for - seed_v in seed_values - ]), axis=0) - np_deepstrom_kernel_w_std_accuracy_test = np.std(np.array( - [list(df_deepstrom_kernel_w[df_deepstrom_kernel_w["seed"] == seed_v]["accuracy_test"]) for - seed_v in - seed_values]), axis=0) - np_param_nbr_deepstrom_kernel_w = ( - np.square(np.array(sorted(set(df_deepstrom_kernel_w["subsample_size"])))) + # m x m - np.array( - sorted(set(df_deepstrom_kernel_w["subsample_size"]))) * output_conv_dim + # m x d - np.array( - sorted(list(set(df_deepstrom_kernel_w["subsample_size"])))) * nb_classes) # m x c - - ax.errorbar(np_param_nbr_deepstrom_kernel_w, - np_deepstrom_kernel_w_mean_accuracy_test, - np_deepstrom_kernel_w_std_accuracy_test, - marker=learned_nys_marker, color=linearity_color, - label="Adaptative Deepström", - capsize=3) - - # get the results of vanilla nystrom - df_deepstrom_kernel_k = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"]] - if len(df_deepstrom_kernel_k): - np_deepstrom_kernel_k_mean_accuracy_test = np.mean( - np.array([list( - df_deepstrom_kernel_k[df_deepstrom_kernel_k["seed"] == seed_v]["accuracy_test"]) for - seed_v in - seed_values]), axis=0) - np_deepstrom_kernel_k_std_accuracy_test = np.std( - np.array([list( - df_deepstrom_kernel_k[df_deepstrom_kernel_k["seed"] == seed_v]["accuracy_test"]) for - seed_v in - seed_values]), axis=0) - - np_param_nbr_deepstrom_kernel_k = ( - np.square(np.array(sorted(set(df_deepstrom_kernel_k["subsample_size"])))) + # m x m - np.array(sorted( - set(df_deepstrom_kernel_k["subsample_size"]))) * output_conv_dim + # m x d - np.array(sorted( - list(set(df_deepstrom_kernel_k["subsample_size"])))) * nb_classes) # m x c - - ax.errorbar(np_param_nbr_deepstrom_kernel_k, - np_deepstrom_kernel_k_mean_accuracy_test, - np_deepstrom_kernel_k_std_accuracy_test, - marker=real_nys_marker, color=linearity_color, - label="Deepström", - capsize=3) - - # plot dense - # ========== - df_dense = df_drop[df_drop["method_name"] == "dense"] - df_dense = df_dense[df_dense["train_size"] == t_size] - df_dense["repr_dim"] = df_dense["repr_dim"].astype(np.int) - df_dense = df_dense.sort_values(by=["repr_dim"]) - np_dense_mean_accuracy_test = np.mean( - np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in - seed_values]), axis=0) - np_dense_std_accuracy_test = np.std( - np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in - seed_values]), axis=0) - ax.errorbar( - np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * output_conv_dim + - np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * nb_classes, - np_dense_mean_accuracy_test, - np_dense_std_accuracy_test, - color=dense_color, - marker=dense_marker, - label="Fully Connected", capsize=3) - - # plot deepfried - # ============== - df_deepfried = df_drop[df_drop["method_name"] == "deepfriedconvnet"] - np_deepfried_mean_accuracy_test = [] - np_deepfried_std_accuracy_test = [] - for l_nb in sorted(nb_layers_deepfried): - df_deepfried_stack = df_deepfried[df_deepfried["nb_layer_deepfried"] == l_nb] - np_deepfried_mean_accuracy_test.append(np.mean(df_deepfried_stack["accuracy_test"])) - np_deepfried_std_accuracy_test.append(np.std(df_deepfried_stack["accuracy_test"])) - - ax.errorbar([(output_conv_dim * 3 + output_conv_dim * nb_classes) * i for i in [1]], - np_deepfried_mean_accuracy_test, - np_deepfried_std_accuracy_test, - color=deepfried_color, - marker=deepfried_marker, - - label="Adaptative DeepFriedConvnet", capsize=3) - ax.set_ylim(min_acc, max_acc) - ax.set_ylabel("Accuracy") - ax.set_xticks([1e4, 1e5, 1e6]) - # if i == 2: - # ax.set_xlabel("# Parameters") - ax.set_xlabel("# Parameters") - ax.legend(bbox_to_anchor=(0.5, -0.20), loc="upper center", ncol=2) - ax.set_xticklabels([1e4, 1e5, 1e6]) - # else: - # ax.set_xticklabels([]) - ax.set_xscale("symlog") - - ax_twin = ax.twiny() - ax_twin.set_xscale("symlog") - ax_twin.set_xlim(ax.get_xlim()) - ax_twin.set_xticks(np_param_nbr_deepstrom_kernel_w) - - # if i == 0: - ax_twin.set_xlabel("Subsample Size") - ax.set_title( - "{} Kernel - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size), - y=1.2) - ax_twin.set_xticklabels(sorted(set(df_deepstrom_kernel_w["subsample_size"]))) - # else: - # ax.set_title("Noyau {} - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size)) - # ax_twin.set_xticklabels([]) - - f.set_size_inches(8, 6) - f.tight_layout() - f.subplots_adjust(bottom=0.3) - # f.show() - # exit() - # learnable: change legend - # ODIR = [ - # "/home/luc/PycharmProjects/deepFriedConvnets/main/experiments/graph_drawing/paper/svhn/few_data/parameters/dropout_{}".format( - # str(drop_val).replace(".", "-"))] - # out_dir_path = ODIR[h] - - - if k_name != "rbf": - out_name = "acc_param_tsize_{}_{}_{}".format(t_size, str(drop_val).replace(".", "-"), - k_name) - else: - out_name = "acc_param_tsize_{}_{}_{}_{}".format(t_size, str(drop_val).replace(".", "-"), - k_name, - str(sigma_values[j]).replace(".", "-")) - - base_out_dir = os.path.join(os.path.abspath(__file__.split(".")[0]), "images") - pathlib.Path(base_out_dir).mkdir(parents=True, exist_ok=True) - out_path = os.path.join(base_out_dir, out_name) - logger.debug(out_path) - f.savefig(out_path) +# pd.set_option('display.width', 1000) +pd.set_option('display.expand_frame_repr', False) + +# DAT = ["SVHN"] +# DIR = ["/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data"] + + +DATANAME = "SVHN" +DIRNAME = "/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data" + +FILENAME = "gathered_results_all.csv" + +min_acc = 0.00 +max_acc = 1.05 +# max_acc = 1.0 +linewidth = 0.9 +output_conv_dim = 512 +nb_classes = 10 + +real_nys_marker = "s" + +learned_nys_marker = "x" + +linearity_color = "g" + +dense_marker = "v" +dense_color = "r" + +deepfried_marker = "8" +deepfried_color = "b" + +d_translate_kernel = { + "linear": "Linear", + "chi2_cpd": "Chi2", + "rbf": "Gaussian" +} + +if __name__ == '__main__': + filepath = os.path.join(DIRNAME, FILENAME) + field_names = ["method_name", + "accuracy_val", + "accuracy_test", + "runtime_train", + "runtime_val", + "runtime_test", + "number_epoch", + "batch_size", + "repr_dim", + "second_layer_size", + "kernel_deepstrom", + "gamma_kernel", + "constante_sigmoid", + "nb_layer_deepfried", + "subsample_size", + "validation_size", + "seed", + "act", + "non_linearity", + "real_nystrom", + "repr_quality", + "train_size", + "dropout", + "dataset", + "real_deepfried" + ] + + df = pd.read_csv(filepath, names=field_names) + df = df[df["accuracy_val"] != 'None'] + df = df.apply(pd.to_numeric, errors="ignore") + df = df.drop_duplicates() + method_names = set(df["method_name"].values) + kernel_names = set(df["kernel_deepstrom"].values) + kernel_names.remove("None") + # kernel_names.remove("laplacian") + repr_dim = set(df["repr_dim"].values) + repr_dim.remove("None") # dtype: str + # repr_dim.remove("16") + nys_size = set(df["subsample_size"].values) + nys_size.remove("None") + nb_layers_deepfried = set(df["nb_layer_deepfried"].values) + nb_layers_deepfried.remove("None") + seed_values = set(df["seed"].values) + batch_size = 128 + train_sizes = set(df["train_size"]) + + cut_layers = set(df["repr_quality"].values) + + logger.debug("Nystrom possible sizes are: {}".format(nys_size)) + logger.debug("Kernel functions are: {}".format(kernel_names)) + logger.debug("Compared network types are: {}".format(method_names)) + logger.debug("Tested representation dimension are: {}".format(repr_dim)) + + means_deepstrom = {} + + for t_size in sorted(list(train_sizes)): + df_tsize = df[df["train_size"] == t_size] + + for cut_layer in cut_layers: + df_cut_layer = df_tsize[df_tsize["repr_quality"] == cut_layer] + + # plot deepstrom + # ============== + df_deepstrom = df_cut_layer[df_cut_layer["method_name"] == "deepstrom"] + df_deepstrom["subsample_size"] = df_deepstrom["subsample_size"].astype(np.int) + df_deepstrom_sort = df_deepstrom.sort_values(by=["subsample_size"]) + for k_name in sorted(kernel_names): + df_deepstrom_kernel = df_deepstrom_sort[df_deepstrom_sort["kernel_deepstrom"] == k_name] + + f, ax = plt.subplots() + + # get the results of learned nystrom + df_deepstrom_kernel_w = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"] == False] + all_accs_w = np.array([ + list(df_deepstrom_kernel_w[df_deepstrom_kernel_w["seed"] == seed_v]["accuracy_test"]) for + seed_v in seed_values + ]) + np_deepstrom_kernel_w_mean_accuracy_test = np.mean(all_accs_w, axis=0) + np_deepstrom_kernel_w_std_accuracy_test = np.std(all_accs_w, axis=0) + np_param_nbr_deepstrom_kernel_w = ( + np.square(np.array(sorted(set(df_deepstrom_kernel_w["subsample_size"])))) + # m x m + np.array( + sorted(set(df_deepstrom_kernel_w["subsample_size"]))) * output_conv_dim + # m x d + np.array( + sorted(list(set(df_deepstrom_kernel_w["subsample_size"])))) * nb_classes) # m x c + + ax.errorbar(np_param_nbr_deepstrom_kernel_w, + np_deepstrom_kernel_w_mean_accuracy_test, + np_deepstrom_kernel_w_std_accuracy_test, + marker=learned_nys_marker, color=linearity_color, + label="Adaptative Deepström", + capsize=3) + + # get the results of vanilla nystrom + df_deepstrom_kernel_k = df_deepstrom_kernel[df_deepstrom_kernel["real_nystrom"]] + if len(df_deepstrom_kernel_k): + all_accs_k = np.array([ + list(df_deepstrom_kernel_k[df_deepstrom_kernel_k["seed"] == seed_v]["accuracy_test"]) for + seed_v in seed_values + ]) + np_deepstrom_kernel_k_mean_accuracy_test = np.mean(all_accs_k, axis=0) + np_deepstrom_kernel_k_std_accuracy_test = np.std(all_accs_k, axis=0) + + np_param_nbr_deepstrom_kernel_k = ( + np.square(np.array(sorted(set(df_deepstrom_kernel_k["subsample_size"])))) + # m x m + np.array(sorted( + set(df_deepstrom_kernel_k["subsample_size"]))) * output_conv_dim + # m x d + np.array(sorted( + list(set(df_deepstrom_kernel_k["subsample_size"])))) * nb_classes) # m x c + + ax.errorbar(np_param_nbr_deepstrom_kernel_k, + np_deepstrom_kernel_k_mean_accuracy_test, + np_deepstrom_kernel_k_std_accuracy_test, + marker=real_nys_marker, color=linearity_color, + label="Deepström", + capsize=3) + + # plot dense + # ========== + df_dense = df_cut_layer[df_cut_layer["method_name"] == "dense"] + df_dense = df_dense[df_dense["train_size"] == t_size] + df_dense["repr_dim"] = df_dense["repr_dim"].astype(np.int) + df_dense = df_dense.sort_values(by=["repr_dim"]) + np_dense_mean_accuracy_test = np.mean( + np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in + seed_values]), axis=0) + np_dense_std_accuracy_test = np.std( + np.array([list(df_dense[df_dense["seed"] == seed_v]["accuracy_test"]) for seed_v in + seed_values]), axis=0) + ax.errorbar( + np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * output_conv_dim + + np.array(sorted([int(n) for n in np.unique(df_dense["repr_dim"])])) * nb_classes, + np_dense_mean_accuracy_test, + np_dense_std_accuracy_test, + color=dense_color, + marker=dense_marker, + label="Fully Connected", capsize=3) + + # # plot deepfried + # # ============== + df_deepfried = df_cut_layer[df_cut_layer["method_name"] == "deepfriedconvnet"] + np_deepfried_mean_accuracy_test = [] + np_deepfried_std_accuracy_test = [] + for l_nb in sorted(nb_layers_deepfried): + df_deepfried_stack = df_deepfried[df_deepfried["nb_layer_deepfried"] == l_nb] + if len(df_deepfried_stack): + np_deepfried_mean_accuracy_test.append(np.mean(df_deepfried_stack["accuracy_test"])) + np_deepfried_std_accuracy_test.append(np.std(df_deepfried_stack["accuracy_test"])) + + nb_param_vals = [(output_conv_dim * 3 + output_conv_dim * nb_classes) * int(i) for i in sorted(set(df_deepfried["nb_layer_deepfried"].values))] + ax.errorbar(nb_param_vals, + np_deepfried_mean_accuracy_test, + np_deepfried_std_accuracy_test, + color=deepfried_color, + marker=deepfried_marker, + label="Adaptative DeepFriedConvnet", capsize=3) + + + ax.set_ylim(min_acc, max_acc) + ax.set_ylabel("Accuracy") + ax.set_xticks([1e4, 1e5, 1e6]) + # if i == 2: + # ax.set_xlabel("# Parameters") + ax.set_xlabel("# Parameters") + ax.legend(bbox_to_anchor=(0.5, -0.20), loc="upper center", ncol=2) + ax.set_xticklabels([1e4, 1e5, 1e6]) + # else: + # ax.set_xticklabels([]) + ax.set_xscale("symlog") + + ax_twin = ax.twiny() + ax_twin.set_xscale("symlog") + ax_twin.set_xlim(ax.get_xlim()) + ax_twin.set_xticks(np_param_nbr_deepstrom_kernel_w) + + # if i == 0: + ax_twin.set_xlabel("Subsample Size") + ax.set_title( + "{} Kernel - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size), + y=1.2) + ax_twin.set_xticklabels(sorted(set(df_deepstrom_kernel_w["subsample_size"]))) + # else: + # ax.set_title("Noyau {} - {} - Train size: {}".format(d_translate_kernel[k_name], DATANAME, t_size)) + # ax_twin.set_xticklabels([]) + + f.set_size_inches(8, 6) + f.tight_layout() + f.subplots_adjust(bottom=0.3) + # f.show() + # exit() + # learnable: change legend + # ODIR = [ + # "/home/luc/PycharmProjects/deepFriedConvnets/main/experiments/graph_drawing/paper/svhn/few_data/parameters/dropout_{}".format( + # str(drop_val).replace(".", "-"))] + # out_dir_path = ODIR[h] + + + out_name = "acc_param_tsize_{}_{}_{}".format(t_size, cut_layer, k_name) + + base_out_dir = os.path.join(os.path.abspath(__file__.split(".")[0]), "images") + pathlib.Path(base_out_dir).mkdir(parents=True, exist_ok=True) + out_path = os.path.join(base_out_dir, out_name) + logger.debug(out_path) + f.savefig(out_path) diff --git a/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py b/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py index 978978b94b39a2c7bdeb2509350692fed240b60e..3ca6a3592a699ad5824b15fc5536fa28f3f9da71 100644 --- a/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py +++ b/main/experiments/graph_drawing/till_october_2018/transfert_few_data_cifar100_from_cifar10/vgg_deepstrom_few_data_cifar100_from_cifar10.py @@ -13,13 +13,13 @@ matplotlib.rcParams.update({'font.size': 14}) pd.set_option('display.expand_frame_repr', False) # DAT = ["SVHN"] -# DIR = ["/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data"] +# DIR = ["/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data_cifar100_from_cifar10"] -DATANAME = "SVHN" +DATANAME = "CIFAR100" DIRNAME = "/home/luc/Resultats/Deepstrom/october_2018/transfert_few_data" -FILENAME = "gathered_results_all.csv" +FILENAME = "gathered_results.csv" min_acc = 0.00 max_acc = 1.05 @@ -72,7 +72,8 @@ if __name__ == '__main__': "train_size", "dropout", "dataset", - "real_deepfried" + "real_deepfried", + "weights" ] df = pd.read_csv(filepath, names=field_names) diff --git a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml index 2224de04489bc0d546da6f22f2de037266eced93..4dc38842bd4650815b3e1df3502179acc7ec1b93 100644 --- a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml +++ b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data.yml @@ -1,22 +1,18 @@ all: dense: deepfried: - deepstrom_real_gamma: - deepstrom_real_no_kernel_param: - deepstrom_learned_gamma: - deepstrom_learned_no_kernel_param: + deepstrom: base: - epoch_numbers: {"-e": [50]} + epoch_numbers: {"-e": [100]} batch_sizes: {"-s": [64]} val_size: {"-v": [10000]} - seed: {"-a": "range(5)"} - dropout: {"-d": [0.5, 0.7, 1.0]} + seed: {"-a": "range(10)"} + quiet: ["-q"] data_size: {"-t":[20, 50, 100, 200, 500, 1000, 2000]} dataset: ["--svhn"] - -gammavalue: - gamma: {"-g": [0.0001, 0.001, 0.0025145440260884045, 0.01, 0.1]} + weights: {"-W": ["cifar100"]} + cut_layer: {"-B": ["block3_pool", "block5_conv4", "block5_pool"]} dense: network: ["dense"] @@ -26,36 +22,12 @@ dense: deepfried: network: ["deepfriedconvnet"] base: - gammavalue: - nbstacks: {"-N": [1]} + nbstacks: {"-N": [1, 3, 5, 7]} -deepstrom_base: +deepstrom: network: ["deepstrom"] base: + real_nys: ["-r", ""] nys_size: {"-m": [16, 64, 128, 256, 512, 1024]} - -deepstrom_real: - deepstrom_base: - real_nys: ["-r"] - -deepstrom_real_gamma: - deepstrom_real: - gammavalue: - kernel: ["-R"] - -deepstrom_real_no_kernel_param: - deepstrom_real: - kernel: ["-C", "-L"] - -deepstrom_learned: - deepstrom_base: - -deepstrom_learned_gamma: - deepstrom_learned: - gammavalue: - kernel: ["-R"] - -deepstrom_learned_no_kernel_param: - deepstrom_learned: - kernel: ["-C", "-L"] + kernel: ["-C", "-L", "-R"] diff --git a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml index 4dc38842bd4650815b3e1df3502179acc7ec1b93..744e7443fb60e0c0d4aac1f2ca35cac9abfd2a5b 100644 --- a/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml +++ b/main/experiments/parameter_files/october_2018/lazyfile_transfert_few_data_cifar100_from_cifar10.yml @@ -10,8 +10,8 @@ base: seed: {"-a": "range(10)"} quiet: ["-q"] data_size: {"-t":[20, 50, 100, 200, 500, 1000, 2000]} - dataset: ["--svhn"] - weights: {"-W": ["cifar100"]} + dataset: ["--cifar100"] + weights: {"-W": ["cifar10"]} cut_layer: {"-B": ["block3_pool", "block5_conv4", "block5_pool"]} dense: