diff --git a/main/experiments/scripts/november_2018/end_to_end_with_2_layers_only_dense_with_augment/deepstrom_classif_end_to_end.py b/main/experiments/scripts/november_2018/end_to_end_with_2_layers_only_dense_with_augment/deepstrom_classif_end_to_end.py index 9af698510ae80c51a6987051c8d711cfc6eabbb5..7e99250185f4f4685567e68c5e6bb8f2feb9bf93 100644 --- a/main/experiments/scripts/november_2018/end_to_end_with_2_layers_only_dense_with_augment/deepstrom_classif_end_to_end.py +++ b/main/experiments/scripts/november_2018/end_to_end_with_2_layers_only_dense_with_augment/deepstrom_classif_end_to_end.py @@ -247,7 +247,7 @@ def main(paraman, resman, printman): summary_writer = None if paraman["--tensorboard"]: - summary_writer = tf.summary.FileWriter("debug_classification_end_to_end") + summary_writer = tf.summary.FileWriter(f"log/{int(t.time())}/{paraman['dataset']}/nys_size_{paraman['--nys-size']}/") # In[7]: @@ -262,8 +262,7 @@ def main(paraman, resman, printman): j = 0 for i in range(paraman["--num-epoch"]): logger.debug(memory_usage()) - k = 0 - for X_batch, Y_batch in datagen.flow(X_train, y_train, batch_size=paraman["--batch-size"]): + for k, (X_batch, Y_batch) in enumerate(datagen.flow(X_train, y_train, batch_size=paraman["--batch-size"])): if paraman["network"] == "deepstrom": feed_dict = {x: X_batch, y: Y_batch, subs: nys_subsample} else: @@ -277,8 +276,9 @@ def main(paraman, resman, printman): acc)) if paraman["--tensorboard"]: summary_writer.add_summary(summary_str, j) - k += 1 j += 1 + if k > int(data.train[0].shape[0] / paraman["--batch-size"]): + break logger.info("Evaluation on validation data") training_time = t.time() - global_start diff --git a/main/experiments/scripts/november_2018/end_to_end_with_augment/deepstrom_classif_end_to_end.py b/main/experiments/scripts/november_2018/end_to_end_with_augment/deepstrom_classif_end_to_end.py index 3208b9f31244899f75e26d874d7bc6ff0e06dfa8..903d0541d61d7456954d343c467b09c76e4ef99b 100644 --- a/main/experiments/scripts/november_2018/end_to_end_with_augment/deepstrom_classif_end_to_end.py +++ b/main/experiments/scripts/november_2018/end_to_end_with_augment/deepstrom_classif_end_to_end.py @@ -239,7 +239,7 @@ def main(paraman, resman, printman): summary_writer = None if paraman["--tensorboard"]: - summary_writer = tf.summary.FileWriter("debug_classification_end_to_end") + summary_writer = tf.summary.FileWriter(f"log/{int(t.time())}/{paraman['dataset']}/nys_size_{paraman['--nys-size']}/") # In[7]: @@ -254,8 +254,8 @@ def main(paraman, resman, printman): j = 0 for i in range(paraman["--num-epoch"]): logger.debug(memory_usage()) - k = 0 - for X_batch, Y_batch in datagen.flow(X_train, y_train, batch_size=paraman["--batch-size"]): + + for k, (X_batch, Y_batch) in enumerate(datagen.flow(X_train, y_train, batch_size=paraman["--batch-size"])): if paraman["network"] == "deepstrom": feed_dict = {x: X_batch, y: Y_batch, subs: nys_subsample} else: @@ -269,8 +269,10 @@ def main(paraman, resman, printman): acc)) if paraman["--tensorboard"]: summary_writer.add_summary(summary_str, j) - k += 1 j += 1 + if k > int(data.train[0].shape[0] / paraman["--batch-size"]): + break + logger.info("Evaluation on validation data") training_time = t.time() - global_start