import numpy as np from bolsonaro.models.model_parameters import ModelParameters from bolsonaro.models.omp_forest_classifier import OmpForestBinaryClassifier, OmpForestMulticlassClassifier from bolsonaro.models.omp_forest_regressor import OmpForestRegressor def test_binary_classif_omp(): model_parameters = ModelParameters( 1, False, ['train+dev', 'train+dev'], False, 1, {'n_estimators': 100}, 'omp' ) omp_forest = OmpForestBinaryClassifier(model_parameters) X_train = [[1, 0], [0, 1]] y_train = [-1, 1] omp_forest.fit(X_train, y_train, X_train, y_train) results = omp_forest.predict(X_train) assert isinstance(results, np.ndarray) def test_regression_omp(): model_parameters = ModelParameters( 1, False, ['train+dev', 'train+dev'], False, 1, {'n_estimators': 100}, 'omp' ) omp_forest = OmpForestRegressor(model_parameters) X_train = [[1, 0], [0, 1]] y_train = [-1, 1] omp_forest.fit(X_train, y_train, X_train, y_train) results = omp_forest.predict(X_train) assert isinstance(results, np.ndarray) def test_multiclassif_omp(): model_parameters = ModelParameters( 1, False, ['train+dev', 'train+dev'], False, 1, {'n_estimators': 100}, 'omp' ) omp_forest = OmpForestMulticlassClassifier(model_parameters) X_train = [[1, 0], [0, 1]] y_train = [-1, 1] omp_forest.fit(X_train, y_train, X_train, y_train) results = omp_forest.predict(X_train) assert isinstance(results, np.ndarray)