from bolsonaro.data.dataset_parameters import DatasetParameters from bolsonaro.data.dataset_loader import DatasetLoader from bolsonaro.models.model_raw_results import ModelRawResults from bolsonaro.models.model_factory import ModelFactory from bolsonaro.visualization.plotter import Plotter import argparse import pathlib from dotenv import find_dotenv, load_dotenv import os if __name__ == "__main__": # get environment variables in .env load_dotenv(find_dotenv('.env.example')) DEFAULT_RESULTS_DIR = os.environ["project_dir"] + os.sep + 'results' DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models' DEFAULT_EXPERIMENT_IDS = None parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--results_dir', nargs='?', type=str, default=DEFAULT_RESULTS_DIR, help='The output directory of the results.') parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.') parser.add_argument('--experiment_ids', nargs='+', type=int, default=DEFAULT_EXPERIMENT_IDS, help='Compute the results of the specified experiment id(s)') args = parser.parse_args() # Create recursively the results dir tree pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True) """ Use specified list of experiments ids if availabe. Otherwise, list all existing experiment ids from the specified models directory. """ experiments_ids = [str(experiment_id) for experiment_id in args.experiment_ids] \ if args.experiment_ids is not None \ else os.listdir(args.models_dir) """ Raise an error if there's no experiments ids found both in parameter or in models directory. """ if experiments_ids is None or len(experiments_ids) == 0: raise ValueError("No experiment id was found or specified.") # Compute the plots for each experiment id for experiment_id in experiments_ids: experiment_id_path = args.models_dir + os.sep + experiment_id # models/{experiment_id} # Create recursively the tree results/{experiment_id} pathlib.Path(args.results_dir + os.sep + experiment_id).mkdir(parents=True, exist_ok=True) experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds """ Dictionaries to temporarly store the scalar results with the following structure: {seed_1: [score_1, ..., score_m], ... seed_n: [score_1, ..., score_k]} TODO: to complete to retreive more results """ experiment_train_scores = dict() experiment_dev_scores = dict() experiment_test_scores = dict() experiment_weights = dict() # Used to check if all losses were computed using the same metric (it should be the case) experiment_score_metrics = list() # For each seed results stored in models/{experiment_id}/seeds for seed in os.listdir(experiment_seed_root_path): experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed} dataset_parameters = DatasetParameters.load(experiment_seed_path, experiment_id) # Load the dataset parameters of this experiment, with this specific seed dataset = DatasetLoader.load(dataset_parameters) # Load the dataset using the previously loaded dataset parameters extracted_forest_size_root_path = experiment_seed_path + os.sep + 'extracted_forest_size' # models/{experiment_id}/seeds/{seed}/extracted_forest_size # {{seed}:[]} experiment_train_scores[seed] = list() experiment_dev_scores[seed] = list() experiment_test_scores[seed] = list() experiment_weights[seed] = list() # List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_size extracted_forest_sizes = os.listdir(extracted_forest_size_root_path) for extracted_forest_size in extracted_forest_sizes: # models/{experiment_id}/seeds/{seed}/extracted_forest_size/{extracted_forest_size} extracted_forest_size_path = extracted_forest_size_root_path + os.sep + extracted_forest_size # Load models/{experiment_id}/seeds/{seed}/extracted_forest_size/{extracted_forest_size}/model_raw_results.pickle file model_raw_results = ModelRawResults.load(extracted_forest_size_path) # Load [...]/model_parameters.json file and build the model using these parameters and the weights and forest from model_raw_results.pickle model = ModelFactory.load(dataset.task, extracted_forest_size_path, experiment_id, model_raw_results) # Save temporarly some raw results (TODO: to complete to retreive more results) # Save the scores experiment_train_scores[seed].append(model_raw_results.train_score) experiment_dev_scores[seed].append(model_raw_results.dev_score) experiment_test_scores[seed].append(model_raw_results.test_score) # Save the weights experiment_weights[seed].append(model_raw_results.weights) # Save the metric experiment_score_metrics.append(model_raw_results.score_metric) if len(set(experiment_score_metrics)) > 1: raise ValueError("The metrics used to compute the dev score aren't the same everytime") """ Example of plot that just plots the losses computed on the train, dev and test subsets using a trained model, with the CI, and depending on the extracted forest size. """ Plotter.plot_losses( file_path=args.results_dir + os.sep + experiment_id + os.sep + 'losses.png', all_experiment_scores=[experiment_train_scores, experiment_dev_scores, experiment_test_scores], x_value=extracted_forest_sizes, xlabel='Number of trees extracted', ylabel=experiment_score_metrics[0], all_labels=['train', 'dev', 'test'], title='Loss values of the trained model' ) """ TODO: For each dataset: Stage 1) A figure for the selection of the best base forest model hyperparameters (best vs default/random hyperparams) Stage 2) A figure for the selection of the best dataset normalization method Stage 3) A figure for the selection of the best combination of dataset: normalization vs D normalization vs weights normalization Stage 4) A figure for the selection of the most relevant subsets combination: train,dev vs train+dev,train+dev vs train,train+dev Stage 5) A figure for the selection of the best extracted forest size? Stage 6) A figure to finally compare the perf of our approach using the previous selected parameters vs the baseline vs other papers Stage 3) In all axis: - untrained forest - trained base forest (straight line cause it doesn't depend on the number of extracted trees) Axis 1: - test with forest on train+dev and OMP on train+dev - test with forest on train+dev and OMP on train+dev with dataset normalization - test with forest on train+dev and OMP on train+dev with dataset normalization + D normalization - test with forest on train+dev and OMP on train+dev with dataset normalization + weights normalization - test with forest on train+dev and OMP on train+dev with dataset normalization + D normalization + weights normalization Axis 2: - test with forest on train and OMP on dev - test with forest on train and OMP on dev with dataset normalization - test with forest on train and OMP on dev with dataset normalization + D normalization - test with forest on train and OMP on dev with dataset normalization + weights normalization - test with forest on train and OMP on dev with dataset normalization + D normalization + weights normalization Axis 3: - test with forest on train and OMP train+dev - test with forest on train and OMP train+dev with dataset normalization - test with forest on train and OMP train+dev with dataset normalization + D normalization - test with forest on train and OMP train+dev with dataset normalization + weights normalization - test with forest on train and OMP train+dev with dataset normalization + D normalization + weights normalization IMPORTANT: Same seeds used in all axis. """ # Plot the density of the weights Plotter.weight_density( file_path=args.results_dir + os.sep + experiment_id + os.sep + 'density_weight.png', all_experiment_weights=experiment_weights )