Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!9
Resolve "Experiment pipeline"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "Experiment pipeline"
12-experiment-pipeline
into
master
Overview
0
Commits
38
Pipelines
0
Changes
11
Merged
Charly Lamothe
requested to merge
12-experiment-pipeline
into
master
5 years ago
Overview
0
Commits
38
Pipelines
0
Changes
11
Expand
Closes
#12 (closed)
Edited
5 years ago
by
Charly Lamothe
0
0
Merge request reports
Viewing commit
11017545
Prev
Next
Show latest version
11 files
+
190
−
69
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
11
Search (e.g. *.vue) (Ctrl+P)
11017545
- Replace the futures concurrence by joblib Parallel (and add optional tqdm progress bar);
· 11017545
Charly Lamothe
authored
5 years ago
- Add new best params for 7 datasets.
code/bolsonaro/models/model_factory.py
+
32
−
17
Options
from
bolsonaro.models.omp_forest_classifier
import
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
from
bolsonaro.models.omp_forest_regressor
import
OmpForestRegressor
from
bolsonaro.data.task
import
Task
from
bolsonaro.models.model_parameters
import
ModelParameters
from
bolsonaro.models.similarity_forest_regressor
import
SimilarityForestRegressor
from
bolsonaro.data.task
import
Task
from
sklearn.ensemble
import
RandomForestRegressor
,
RandomForestClassifier
import
os
import
pickle
@@ -11,22 +13,35 @@ class ModelFactory(object):
@staticmethod
def
build
(
task
,
model_parameters
):
if
task
not
in
[
Task
.
BINARYCLASSIFICATION
,
Task
.
REGRESSION
,
Task
.
MULTICLASSIFICATION
]:
raise
ValueError
(
"
Unsupported task
'
{}
'"
.
format
(
task
))
if
task
==
Task
.
BINARYCLASSIFICATION
:
model_func
=
OmpForestBinaryClassifier
if
model_parameters
.
extraction_strategy
==
'
omp
'
:
return
OmpForestBinaryClassifier
(
model_parameters
)
elif
model_parameters
.
extraction_strategy
==
'
random
'
:
return
RandomForestClassifier
(
n_estimators
=
model_parameters
.
extracted_forest_size
,
random_state
=
model_parameters
.
seed
)
else
:
return
RandomForestClassifier
(
n_estimators
=
model_parameters
.
hyperparameters
[
'
n_estimators
'
],
random_state
=
model_parameters
.
seed
)
elif
task
==
Task
.
REGRESSION
:
model_func
=
OmpForestRegressor
if
model_parameters
.
extraction_strategy
==
'
omp
'
:
return
OmpForestRegressor
(
model_parameters
)
elif
model_parameters
.
extraction_strategy
==
'
random
'
:
return
RandomForestRegressor
(
n_estimators
=
model_parameters
.
extracted_forest_size
,
random_state
=
model_parameters
.
seed
)
elif
model_parameters
.
extraction_strategy
==
'
similarity
'
:
return
SimilarityForestRegressor
(
model_parameters
)
else
:
return
RandomForestRegressor
(
n_estimators
=
model_parameters
.
hyperparameters
[
'
n_estimators
'
],
random_state
=
model_parameters
.
seed
)
elif
task
==
Task
.
MULTICLASSIFICATION
:
model_func
=
OmpForestMulticlassClassifier
if
model_parameters
.
extraction_strategy
==
'
omp
'
:
return
OmpForestMulticlassClassifier
(
model_parameters
)
elif
model_parameters
.
extraction_strategy
==
'
random
'
:
return
RandomForestClassifier
(
n_estimators
=
model_parameters
.
extracted_forest_size
,
random_state
=
model_parameters
.
seed
)
else
:
raise
ValueError
(
"
Unsupported task
'
{}
'"
.
format
(
task
))
return
model_func
(
model_parameters
)
@staticmethod
def
load
(
task
,
directory_path
,
experiment_id
,
model_raw_results
):
raise
NotImplementedError
model_parameters
=
ModelParameters
.
load
(
directory_path
,
experiment_id
)
model
=
ModelFactory
.
build
(
task
,
model_parameters
)
# todo faire ce qu'il faut ici pour rétablir correctement le modèle
model
.
set_forest
(
model_raw_results
.
model_object
.
forest
)
model
.
set_weights
(
model_raw_results
.
model_object
.
weights
)
return
model
return
RandomForestClassifier
(
n_estimators
=
model_parameters
.
hyperparameters
[
'
n_estimators
'
],
random_state
=
model_parameters
.
seed
)
Loading