Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!15
Resolve "Adding new datasets"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "Adding new datasets"
17-adding-new-datasets
into
master
Overview
0
Commits
39
Pipelines
0
Changes
206
Merged
Leo Bouscarrat
requested to merge
17-adding-new-datasets
into
master
5 years ago
Overview
0
Commits
39
Pipelines
0
Changes
5
Expand
Closes
#17 (closed)
Edited
5 years ago
by
Charly Lamothe
0
0
Merge request reports
Compare
version 31
version 31
6378245a
5 years ago
version 30
2d896dd1
5 years ago
version 29
0f1d25f7
5 years ago
version 28
24d53ff8
5 years ago
version 27
006b001e
5 years ago
version 26
0edaa3f0
5 years ago
version 25
1d5b54a1
5 years ago
version 24
1b84a5c6
5 years ago
version 23
b9f6822b
5 years ago
version 22
1531c791
5 years ago
version 21
31a58a03
5 years ago
version 20
0b0af680
5 years ago
version 19
a03357d0
5 years ago
version 18
baca1281
5 years ago
version 17
264288b4
5 years ago
version 16
33453392
5 years ago
version 15
34bca5fe
5 years ago
version 14
72465f53
5 years ago
version 13
1a22e391
5 years ago
version 12
36241737
5 years ago
version 11
1bfd15fe
5 years ago
version 10
baa96e2a
5 years ago
version 9
77f3c68b
5 years ago
version 8
b2d16a25
5 years ago
version 7
7885ac63
5 years ago
version 6
effd61df
5 years ago
version 5
b5bbdccd
5 years ago
version 4
96f51d9c
5 years ago
version 3
36e191bc
5 years ago
version 2
2921c030
5 years ago
version 1
61a8e5a9
5 years ago
master (base)
and
latest version
latest version
b0e1c83e
39 commits,
5 years ago
version 31
6378245a
38 commits,
5 years ago
version 30
2d896dd1
37 commits,
5 years ago
version 29
0f1d25f7
36 commits,
5 years ago
version 28
24d53ff8
35 commits,
5 years ago
version 27
006b001e
34 commits,
5 years ago
version 26
0edaa3f0
33 commits,
5 years ago
version 25
1d5b54a1
32 commits,
5 years ago
version 24
1b84a5c6
29 commits,
5 years ago
version 23
b9f6822b
27 commits,
5 years ago
version 22
1531c791
26 commits,
5 years ago
version 21
31a58a03
25 commits,
5 years ago
version 20
0b0af680
24 commits,
5 years ago
version 19
a03357d0
22 commits,
5 years ago
version 18
baca1281
21 commits,
5 years ago
version 17
264288b4
20 commits,
5 years ago
version 16
33453392
18 commits,
5 years ago
version 15
34bca5fe
17 commits,
5 years ago
version 14
72465f53
16 commits,
5 years ago
version 13
1a22e391
15 commits,
5 years ago
version 12
36241737
14 commits,
5 years ago
version 11
1bfd15fe
13 commits,
5 years ago
version 10
baa96e2a
12 commits,
5 years ago
version 9
77f3c68b
11 commits,
5 years ago
version 8
b2d16a25
10 commits,
5 years ago
version 7
7885ac63
9 commits,
5 years ago
version 6
effd61df
8 commits,
5 years ago
version 5
b5bbdccd
7 commits,
5 years ago
version 4
96f51d9c
6 commits,
5 years ago
version 3
36e191bc
4 commits,
5 years ago
version 2
2921c030
2 commits,
5 years ago
version 1
61a8e5a9
1 commit,
5 years ago
Show latest version
5 files
+
257
−
87
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
5
Search (e.g. *.vue) (Ctrl+P)
code/bolsonaro/models/kmeans_forest_regressor.py
0 → 100644
+
78
−
0
Options
from
bolsonaro.utils
import
tqdm_joblib
from
sklearn.ensemble
import
RandomForestRegressor
from
sklearn.metrics
import
mean_squared_error
from
sklearn.base
import
BaseEstimator
from
sklearn.cluster
import
KMeans
from
abc
import
abstractmethod
,
ABCMeta
import
numpy
as
np
from
scipy.stats
import
mode
from
joblib
import
Parallel
,
delayed
from
tqdm
import
tqdm
class
KMeansForestRegressor
(
BaseEstimator
,
metaclass
=
ABCMeta
):
"""
On extreme pruning of random forest ensembles for ral-time predictive applications
'
, by Khaled Fawagreh, Mohamed Medhat Gaber and Eyad Elyan.
"""
def
__init__
(
self
,
models_parameters
,
score_metric
=
mean_squared_error
):
self
.
_models_parameters
=
models_parameters
self
.
_estimator
=
RandomForestRegressor
(
**
self
.
_models_parameters
.
hyperparameters
,
random_state
=
self
.
_models_parameters
.
seed
,
n_jobs
=-
1
)
self
.
_extracted_forest_size
=
self
.
_models_parameters
.
extracted_forest_size
self
.
_score_metric
=
score_metric
@property
def
models_parameters
(
self
):
return
self
.
_models_parameters
def
fit
(
self
,
X_train
,
y_train
,
X_val
,
y_val
):
self
.
_estimator
.
fit
(
X_train
,
y_train
)
predictions
=
list
()
for
tree
in
self
.
_estimator
.
estimators_
:
predictions
.
append
(
tree
.
predict
(
X_train
))
predictions
=
np
.
array
(
predictions
)
kmeans
=
KMeans
(
n_clusters
=
self
.
_extracted_forest_size
,
random_state
=
self
.
_models_parameters
.
seed
).
fit
(
predictions
)
labels
=
np
.
array
(
kmeans
.
labels_
)
# For each cluster select the best tree on the validation set
extracted_forest_sizes
=
list
(
range
(
self
.
_extracted_forest_size
))
with
tqdm_joblib
(
tqdm
(
total
=
self
.
_extracted_forest_size
,
disable
=
True
))
as
prune_forest_job_pb
:
pruned_forest
=
Parallel
(
n_jobs
=-
1
)(
delayed
(
self
.
_prune_forest_job
)(
prune_forest_job_pb
,
extracted_forest_sizes
[
i
],
labels
,
X_val
,
y_val
,
self
.
_score_metric
)
for
i
in
range
(
self
.
_extracted_forest_size
))
self
.
_estimator
.
estimators_
=
pruned_forest
def
_prune_forest_job
(
self
,
prune_forest_job_pb
,
c
,
labels
,
X_val
,
y_val
,
score_metric
):
index
=
np
.
where
(
labels
==
c
)[
0
]
with
tqdm_joblib
(
tqdm
(
total
=
len
(
index
),
disable
=
True
))
as
cluster_job_pb
:
cluster
=
Parallel
(
n_jobs
=-
1
)(
delayed
(
self
.
_cluster_job
)(
cluster_job_pb
,
index
[
i
],
X_val
,
y_val
,
score_metric
)
for
i
in
range
(
len
(
index
)))
best_tree_index
=
np
.
argmax
(
cluster
)
prune_forest_job_pb
.
update
()
return
self
.
_estimator
.
estimators_
[
index
[
best_tree_index
]]
def
_cluster_job
(
self
,
cluster_job_pb
,
i
,
X_val
,
y_val
,
score_metric
):
y_val_pred
=
self
.
_estimator
.
estimators_
[
i
].
predict
(
X_val
)
tree_pred
=
score_metric
(
y_val
,
y_val_pred
)
cluster_job_pb
.
update
()
return
tree_pred
def
predict
(
self
,
X
):
return
self
.
_estimator
.
predict
(
X
)
def
score
(
self
,
X
,
y
):
predictions
=
list
()
for
tree
in
self
.
_estimator
.
estimators_
:
predictions
.
append
(
tree
.
predict
(
X
))
predictions
=
np
.
array
(
predictions
)
mean_predictions
=
np
.
mean
(
predictions
,
axis
=
0
)
score
=
self
.
_score_metric
(
mean_predictions
,
y
)
return
score
def
predict_base_estimator
(
self
,
X
):
return
self
.
_estimator
.
predict
(
X
)
Loading