Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!15
Resolve "Adding new datasets"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "Adding new datasets"
17-adding-new-datasets
into
master
Overview
0
Commits
39
Pipelines
0
Changes
205
Merged
Leo Bouscarrat
requested to merge
17-adding-new-datasets
into
master
5 years ago
Overview
0
Commits
39
Pipelines
0
Changes
1
Expand
Closes
#17 (closed)
Edited
5 years ago
by
Charly Lamothe
0
0
Merge request reports
Compare
version 30
version 31
6378245a
5 years ago
version 30
2d896dd1
5 years ago
version 29
0f1d25f7
5 years ago
version 28
24d53ff8
5 years ago
version 27
006b001e
5 years ago
version 26
0edaa3f0
5 years ago
version 25
1d5b54a1
5 years ago
version 24
1b84a5c6
5 years ago
version 23
b9f6822b
5 years ago
version 22
1531c791
5 years ago
version 21
31a58a03
5 years ago
version 20
0b0af680
5 years ago
version 19
a03357d0
5 years ago
version 18
baca1281
5 years ago
version 17
264288b4
5 years ago
version 16
33453392
5 years ago
version 15
34bca5fe
5 years ago
version 14
72465f53
5 years ago
version 13
1a22e391
5 years ago
version 12
36241737
5 years ago
version 11
1bfd15fe
5 years ago
version 10
baa96e2a
5 years ago
version 9
77f3c68b
5 years ago
version 8
b2d16a25
5 years ago
version 7
7885ac63
5 years ago
version 6
effd61df
5 years ago
version 5
b5bbdccd
5 years ago
version 4
96f51d9c
5 years ago
version 3
36e191bc
5 years ago
version 2
2921c030
5 years ago
version 1
61a8e5a9
5 years ago
master (base)
and
version 31
latest version
b0e1c83e
39 commits,
5 years ago
version 31
6378245a
38 commits,
5 years ago
version 30
2d896dd1
37 commits,
5 years ago
version 29
0f1d25f7
36 commits,
5 years ago
version 28
24d53ff8
35 commits,
5 years ago
version 27
006b001e
34 commits,
5 years ago
version 26
0edaa3f0
33 commits,
5 years ago
version 25
1d5b54a1
32 commits,
5 years ago
version 24
1b84a5c6
29 commits,
5 years ago
version 23
b9f6822b
27 commits,
5 years ago
version 22
1531c791
26 commits,
5 years ago
version 21
31a58a03
25 commits,
5 years ago
version 20
0b0af680
24 commits,
5 years ago
version 19
a03357d0
22 commits,
5 years ago
version 18
baca1281
21 commits,
5 years ago
version 17
264288b4
20 commits,
5 years ago
version 16
33453392
18 commits,
5 years ago
version 15
34bca5fe
17 commits,
5 years ago
version 14
72465f53
16 commits,
5 years ago
version 13
1a22e391
15 commits,
5 years ago
version 12
36241737
14 commits,
5 years ago
version 11
1bfd15fe
13 commits,
5 years ago
version 10
baa96e2a
12 commits,
5 years ago
version 9
77f3c68b
11 commits,
5 years ago
version 8
b2d16a25
10 commits,
5 years ago
version 7
7885ac63
9 commits,
5 years ago
version 6
effd61df
8 commits,
5 years ago
version 5
b5bbdccd
7 commits,
5 years ago
version 4
96f51d9c
6 commits,
5 years ago
version 3
36e191bc
4 commits,
5 years ago
version 2
2921c030
2 commits,
5 years ago
version 1
61a8e5a9
1 commit,
5 years ago
Show latest version
1 file
+
190
−
192
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
code/bolsonaro/trainer.py
+
190
−
192
Options
from
bolsonaro.models.model_raw_results
import
ModelRawResults
from
bolsonaro.models.omp_forest_regressor
import
OmpForestRegressor
from
bolsonaro.models.omp_forest_classifier
import
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
from
bolsonaro.models.similarity_forest_regressor
import
SimilarityForestRegressor
from
bolsonaro.error_handling.logger_factory
import
LoggerFactory
from
bolsonaro.data.task
import
Task
from
.
import
LOG_PATH
from
sklearn.ensemble
import
RandomForestRegressor
,
RandomForestClassifier
from
sklearn.metrics
import
mean_squared_error
,
accuracy_score
import
time
import
datetime
import
numpy
as
np
class
Trainer
(
object
):
"""
Class capable of fitting any model object to some prepared data then evaluate and save results through the `train` method.
"""
def
__init__
(
self
,
dataset
,
regression_score_metric
=
mean_squared_error
,
classification_score_metric
=
accuracy_score
,
base_regression_score_metric
=
mean_squared_error
,
base_classification_score_metric
=
accuracy_score
):
"""
:param dataset: Object with X_train, y_train, X_dev, y_dev, X_test and Y_test attributes
"""
self
.
_dataset
=
dataset
self
.
_logger
=
LoggerFactory
.
create
(
LOG_PATH
,
__name__
)
self
.
_regression_score_metric
=
regression_score_metric
self
.
_classification_score_metric
=
classification_score_metric
self
.
_base_regression_score_metric
=
base_regression_score_metric
self
.
_base_classification_score_metric
=
base_classification_score_metric
self
.
_score_metric_name
=
regression_score_metric
.
__name__
if
dataset
.
task
==
Task
.
REGRESSION
\
else
classification_score_metric
.
__name__
self
.
_base_score_metric_name
=
base_regression_score_metric
.
__name__
if
dataset
.
task
==
Task
.
REGRESSION
\
else
base_classification_score_metric
.
__name__
@property
def
score_metric_name
(
self
):
return
self
.
_score_metric_name
@property
def
base_score_metric_name
(
self
):
return
self
.
_base_score_metric_name
def
init
(
self
,
model
,
subsets_used
=
'
train,dev
'
):
if
type
(
model
)
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
if
subsets_used
==
'
train,dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
else
:
self
.
_X_forest
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_y_forest
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
self
.
_logger
.
debug
(
'
Fitting the forest on train subset
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train,dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
self
.
_X_omp
=
self
.
_dataset
.
X_dev
self
.
_y_omp
=
self
.
_dataset
.
y_dev
self
.
_logger
.
debug
(
'
Fitting the forest on train subset and OMP on dev subset.
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train+dev,train+dev
'
:
self
.
_X_forest
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_X_omp
=
self
.
_X_forest
self
.
_y_forest
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
self
.
_y_omp
=
self
.
_y_forest
self
.
_logger
.
debug
(
'
Fitting both the forest and OMP on train+dev subsets.
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train,train+dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
self
.
_X_omp
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_y_omp
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
else
:
raise
ValueError
(
"
Unknown specified subsets_used parameter
'
{}
'"
.
format
(
model
.
models_parameters
.
subsets_used
))
def
train
(
self
,
model
):
"""
:param model: An instance of either RandomForestRegressor, RandomForestClassifier, OmpForestRegressor,
OmpForestBinaryClassifier, OmpForestMulticlassClassifier.
:return:
"""
self
.
_logger
.
debug
(
'
Training model using train set...
'
)
self
.
_begin_time
=
time
.
time
()
if
type
(
model
)
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
model
.
fit
(
X
=
self
.
_X_forest
,
y
=
self
.
_y_forest
)
else
:
model
.
fit
(
self
.
_X_forest
,
self
.
_y_forest
,
self
.
_X_omp
,
self
.
_y_omp
)
self
.
_end_time
=
time
.
time
()
def
__score_func
(
self
,
model
,
X
,
y_true
,
weights
=
True
):
if
type
(
model
)
in
[
OmpForestRegressor
,
RandomForestRegressor
,
SimilarityForestRegressor
]:
if
weights
:
y_pred
=
model
.
predict
(
X
)
else
:
y_pred
=
model
.
predict_no_weights
(
X
)
result
=
self
.
_regression_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
,
RandomForestClassifier
]:
if
weights
:
y_pred
=
model
.
predict
(
X
)
else
:
y_pred
=
model
.
predict_no_weights
(
X
)
if
type
(
model
)
is
OmpForestBinaryClassifier
:
y_pred
=
np
.
sign
(
y_pred
)
y_pred
=
np
.
where
(
y_pred
==
0
,
1
,
y_pred
)
result
=
self
.
_classification_score_metric
(
y_true
,
y_pred
)
return
result
def
__score_func_base
(
self
,
model
,
X
,
y_true
):
if
type
(
model
)
==
OmpForestRegressor
:
y_pred
=
model
.
predict_base_estimator
(
X
)
result
=
self
.
_base_regression_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
]:
y_pred
=
model
.
predict_base_estimator
(
X
)
result
=
self
.
_base_classification_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
==
RandomForestClassifier
:
y_pred
=
model
.
predict
(
X
)
result
=
self
.
_base_classification_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
RandomForestRegressor
,
SimilarityForestRegressor
]:
y_pred
=
model
.
predict
(
X
)
result
=
self
.
_base_regression_score_metric
(
y_true
,
y_pred
)
return
result
def
compute_results
(
self
,
model
,
models_dir
):
"""
:param model: Object with
:param models_dir: Where the results will be saved
"""
model_weights
=
''
if
type
(
model
)
in
[
OmpForestRegressor
,
OmpForestBinaryClassifier
]:
model_weights
=
model
.
_omp
.
coef_
elif
type
(
model
)
==
OmpForestMulticlassClassifier
:
model_weights
=
model
.
_dct_class_omp
elif
type
(
model
)
==
OmpForestBinaryClassifier
:
model_weights
=
model
.
_omp
results
=
ModelRawResults
(
model_weights
=
model_weights
,
training_time
=
self
.
_end_time
-
self
.
_begin_time
,
datetime
=
datetime
.
datetime
.
now
(),
train_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
),
dev_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
),
test_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
),
train_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
),
dev_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
),
test_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
),
score_metric
=
self
.
_score_metric_name
,
base_score_metric
=
self
.
_base_score_metric_name
)
results
.
save
(
models_dir
)
self
.
_logger
.
info
(
"
Base performance on test: {}
"
.
format
(
results
.
test_score_base
))
self
.
_logger
.
info
(
"
Performance on test: {}
"
.
format
(
results
.
test_score
))
self
.
_logger
.
info
(
"
Base performance on train: {}
"
.
format
(
results
.
train_score_base
))
self
.
_logger
.
info
(
"
Performance on train: {}
"
.
format
(
results
.
train_score
))
self
.
_logger
.
info
(
"
Base performance on dev: {}
"
.
format
(
results
.
dev_score_base
))
self
.
_logger
.
info
(
"
Performance on dev: {}
"
.
format
(
results
.
dev_score
))
if
type
(
model
)
not
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
results
=
ModelRawResults
(
model_weights
=
''
,
training_time
=
self
.
_end_time
-
self
.
_begin_time
,
datetime
=
datetime
.
datetime
.
now
(),
train_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
,
False
),
dev_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
,
False
),
test_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
,
False
),
train_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
),
dev_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
),
test_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
),
score_metric
=
self
.
_score_metric_name
,
base_score_metric
=
self
.
_base_score_metric_name
)
results
.
save
(
models_dir
+
'
_no_weights
'
)
self
.
_logger
.
info
(
"
Base performance on test without weights: {}
"
.
format
(
results
.
test_score_base
))
self
.
_logger
.
info
(
"
Performance on test: {}
"
.
format
(
results
.
test_score
))
self
.
_logger
.
info
(
"
Base performance on train without weights: {}
"
.
format
(
results
.
train_score_base
))
self
.
_logger
.
info
(
"
Performance on train: {}
"
.
format
(
results
.
train_score
))
self
.
_logger
.
info
(
"
Base performance on dev without weights: {}
"
.
format
(
results
.
dev_score_base
))
self
.
_logger
.
info
(
"
Performance on dev: {}
"
.
format
(
results
.
dev_score
))
from
bolsonaro.models.model_raw_results
import
ModelRawResults
from
bolsonaro.models.omp_forest_regressor
import
OmpForestRegressor
from
bolsonaro.models.omp_forest_classifier
import
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
from
bolsonaro.models.similarity_forest_regressor
import
SimilarityForestRegressor
from
bolsonaro.error_handling.logger_factory
import
LoggerFactory
from
bolsonaro.data.task
import
Task
from
.
import
LOG_PATH
from
sklearn.ensemble
import
RandomForestRegressor
,
RandomForestClassifier
from
sklearn.metrics
import
mean_squared_error
,
accuracy_score
import
time
import
datetime
import
numpy
as
np
class
Trainer
(
object
):
"""
Class capable of fitting any model object to some prepared data then evaluate and save results through the `train` method.
"""
def
__init__
(
self
,
dataset
,
regression_score_metric
=
mean_squared_error
,
classification_score_metric
=
accuracy_score
,
base_regression_score_metric
=
mean_squared_error
,
base_classification_score_metric
=
accuracy_score
):
"""
:param dataset: Object with X_train, y_train, X_dev, y_dev, X_test and Y_test attributes
"""
self
.
_dataset
=
dataset
self
.
_logger
=
LoggerFactory
.
create
(
LOG_PATH
,
__name__
)
self
.
_regression_score_metric
=
regression_score_metric
self
.
_classification_score_metric
=
classification_score_metric
self
.
_base_regression_score_metric
=
base_regression_score_metric
self
.
_base_classification_score_metric
=
base_classification_score_metric
self
.
_score_metric_name
=
regression_score_metric
.
__name__
if
dataset
.
task
==
Task
.
REGRESSION
\
else
classification_score_metric
.
__name__
self
.
_base_score_metric_name
=
base_regression_score_metric
.
__name__
if
dataset
.
task
==
Task
.
REGRESSION
\
else
base_classification_score_metric
.
__name__
@property
def
score_metric_name
(
self
):
return
self
.
_score_metric_name
@property
def
base_score_metric_name
(
self
):
return
self
.
_base_score_metric_name
def
init
(
self
,
model
,
subsets_used
=
'
train,dev
'
):
if
type
(
model
)
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
if
subsets_used
==
'
train,dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
else
:
self
.
_X_forest
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_y_forest
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
self
.
_logger
.
debug
(
'
Fitting the forest on train subset
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train,dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
self
.
_X_omp
=
self
.
_dataset
.
X_dev
self
.
_y_omp
=
self
.
_dataset
.
y_dev
self
.
_logger
.
debug
(
'
Fitting the forest on train subset and OMP on dev subset.
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train+dev,train+dev
'
:
self
.
_X_forest
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_X_omp
=
self
.
_X_forest
self
.
_y_forest
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
self
.
_y_omp
=
self
.
_y_forest
self
.
_logger
.
debug
(
'
Fitting both the forest and OMP on train+dev subsets.
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train,train+dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
self
.
_X_omp
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_y_omp
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
else
:
raise
ValueError
(
"
Unknown specified subsets_used parameter
'
{}
'"
.
format
(
model
.
models_parameters
.
subsets_used
))
def
train
(
self
,
model
):
"""
:param model: An instance of either RandomForestRegressor, RandomForestClassifier, OmpForestRegressor,
OmpForestBinaryClassifier, OmpForestMulticlassClassifier.
:return:
"""
self
.
_logger
.
debug
(
'
Training model using train set...
'
)
self
.
_begin_time
=
time
.
time
()
if
type
(
model
)
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
model
.
fit
(
X
=
self
.
_X_forest
,
y
=
self
.
_y_forest
)
else
:
model
.
fit
(
self
.
_X_forest
,
self
.
_y_forest
,
self
.
_X_omp
,
self
.
_y_omp
)
self
.
_end_time
=
time
.
time
()
def
__score_func
(
self
,
model
,
X
,
y_true
,
weights
=
True
):
if
type
(
model
)
in
[
OmpForestRegressor
,
RandomForestRegressor
,
SimilarityForestRegressor
]:
if
weights
:
y_pred
=
model
.
predict
(
X
)
else
:
y_pred
=
model
.
predict_no_weights
(
X
)
result
=
self
.
_regression_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
,
RandomForestClassifier
]:
if
weights
:
y_pred
=
model
.
predict
(
X
)
else
:
y_pred
=
model
.
predict_no_weights
(
X
)
if
type
(
model
)
is
OmpForestBinaryClassifier
:
y_pred
=
np
.
sign
(
y_pred
)
y_pred
=
np
.
where
(
y_pred
==
0
,
1
,
y_pred
)
result
=
self
.
_classification_score_metric
(
y_true
,
y_pred
)
return
result
def
__score_func_base
(
self
,
model
,
X
,
y_true
):
if
type
(
model
)
==
OmpForestRegressor
:
y_pred
=
model
.
predict_base_estimator
(
X
)
result
=
self
.
_base_regression_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
]:
y_pred
=
model
.
predict_base_estimator
(
X
)
result
=
self
.
_base_classification_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
==
RandomForestClassifier
:
y_pred
=
model
.
predict
(
X
)
result
=
self
.
_base_classification_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
RandomForestRegressor
,
SimilarityForestRegressor
]:
y_pred
=
model
.
predict
(
X
)
result
=
self
.
_base_regression_score_metric
(
y_true
,
y_pred
)
return
result
def
compute_results
(
self
,
model
,
models_dir
):
"""
:param model: Object with
:param models_dir: Where the results will be saved
"""
model_weights
=
''
if
type
(
model
)
in
[
OmpForestRegressor
,
OmpForestBinaryClassifier
]:
model_weights
=
model
.
_omp
.
coef_
elif
type
(
model
)
==
OmpForestMulticlassClassifier
:
model_weights
=
model
.
_dct_class_omp
elif
type
(
model
)
==
OmpForestBinaryClassifier
:
model_weights
=
model
.
_omp
results
=
ModelRawResults
(
model_weights
=
model_weights
,
training_time
=
self
.
_end_time
-
self
.
_begin_time
,
datetime
=
datetime
.
datetime
.
now
(),
train_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
),
dev_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
),
test_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
),
train_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
),
dev_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
),
test_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
),
score_metric
=
self
.
_score_metric_name
,
base_score_metric
=
self
.
_base_score_metric_name
)
results
.
save
(
models_dir
)
self
.
_logger
.
info
(
"
Base performance on test: {}
"
.
format
(
results
.
test_score_base
))
self
.
_logger
.
info
(
"
Performance on test: {}
"
.
format
(
results
.
test_score
))
self
.
_logger
.
info
(
"
Base performance on train: {}
"
.
format
(
results
.
train_score_base
))
self
.
_logger
.
info
(
"
Performance on train: {}
"
.
format
(
results
.
train_score
))
self
.
_logger
.
info
(
"
Base performance on dev: {}
"
.
format
(
results
.
dev_score_base
))
self
.
_logger
.
info
(
"
Performance on dev: {}
"
.
format
(
results
.
dev_score
))
if
type
(
model
)
not
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
results
=
ModelRawResults
(
model_weights
=
''
,
training_time
=
self
.
_end_time
-
self
.
_begin_time
,
datetime
=
datetime
.
datetime
.
now
(),
train_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
,
False
),
dev_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
,
False
),
test_score
=
self
.
__score_func
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
,
False
),
train_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_train
,
self
.
_dataset
.
y_train
),
dev_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_dev
,
self
.
_dataset
.
y_dev
),
test_score_base
=
self
.
__score_func_base
(
model
,
self
.
_dataset
.
X_test
,
self
.
_dataset
.
y_test
),
score_metric
=
self
.
_score_metric_name
,
base_score_metric
=
self
.
_base_score_metric_name
)
results
.
save
(
models_dir
+
'
_no_weights
'
)
self
.
_logger
.
info
(
"
Base performance on test without weights: {}
"
.
format
(
results
.
test_score_base
))
self
.
_logger
.
info
(
"
Performance on test: {}
"
.
format
(
results
.
test_score
))
self
.
_logger
.
info
(
"
Base performance on train without weights: {}
"
.
format
(
results
.
train_score_base
))
self
.
_logger
.
info
(
"
Performance on train: {}
"
.
format
(
results
.
train_score
))
self
.
_logger
.
info
(
"
Base performance on dev without weights: {}
"
.
format
(
results
.
dev_score_base
))
self
.
_logger
.
info
(
"
Performance on dev: {}
"
.
format
(
results
.
dev_score
))
Loading