Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!15
Couldn't fetch the linked file.
Resolve "Adding new datasets"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "Adding new datasets"
17-adding-new-datasets
into
master
Overview
0
Commits
39
Pipelines
0
Changes
5
Merged
Leo Bouscarrat
requested to merge
17-adding-new-datasets
into
master
5 years ago
Overview
0
Commits
39
Pipelines
0
Changes
5
Expand
Closes
#17 (closed)
Edited
5 years ago
by
Charly Lamothe
0
0
Merge request reports
Viewing commit
b0e1c83e
Prev
Next
Show latest version
5 files
+
257
−
87
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
5
Search (e.g. *.vue) (Ctrl+P)
b0e1c83e
Merge branch 'master' into 17-adding-new-datasets
· b0e1c83e
Charly Lamothe
authored
5 years ago
code/bolsonaro/models/kmeans_forest_regressor.py
0 → 100644
+
78
−
0
Options
from
bolsonaro.utils
import
tqdm_joblib
from
sklearn.ensemble
import
RandomForestRegressor
from
sklearn.metrics
import
mean_squared_error
from
sklearn.base
import
BaseEstimator
from
sklearn.cluster
import
KMeans
from
abc
import
abstractmethod
,
ABCMeta
import
numpy
as
np
from
scipy.stats
import
mode
from
joblib
import
Parallel
,
delayed
from
tqdm
import
tqdm
class
KMeansForestRegressor
(
BaseEstimator
,
metaclass
=
ABCMeta
):
"""
On extreme pruning of random forest ensembles for ral-time predictive applications
'
, by Khaled Fawagreh, Mohamed Medhat Gaber and Eyad Elyan.
"""
def
__init__
(
self
,
models_parameters
,
score_metric
=
mean_squared_error
):
self
.
_models_parameters
=
models_parameters
self
.
_estimator
=
RandomForestRegressor
(
**
self
.
_models_parameters
.
hyperparameters
,
random_state
=
self
.
_models_parameters
.
seed
,
n_jobs
=-
1
)
self
.
_extracted_forest_size
=
self
.
_models_parameters
.
extracted_forest_size
self
.
_score_metric
=
score_metric
@property
def
models_parameters
(
self
):
return
self
.
_models_parameters
def
fit
(
self
,
X_train
,
y_train
,
X_val
,
y_val
):
self
.
_estimator
.
fit
(
X_train
,
y_train
)
predictions
=
list
()
for
tree
in
self
.
_estimator
.
estimators_
:
predictions
.
append
(
tree
.
predict
(
X_train
))
predictions
=
np
.
array
(
predictions
)
kmeans
=
KMeans
(
n_clusters
=
self
.
_extracted_forest_size
,
random_state
=
self
.
_models_parameters
.
seed
).
fit
(
predictions
)
labels
=
np
.
array
(
kmeans
.
labels_
)
# For each cluster select the best tree on the validation set
extracted_forest_sizes
=
list
(
range
(
self
.
_extracted_forest_size
))
with
tqdm_joblib
(
tqdm
(
total
=
self
.
_extracted_forest_size
,
disable
=
True
))
as
prune_forest_job_pb
:
pruned_forest
=
Parallel
(
n_jobs
=-
1
)(
delayed
(
self
.
_prune_forest_job
)(
prune_forest_job_pb
,
extracted_forest_sizes
[
i
],
labels
,
X_val
,
y_val
,
self
.
_score_metric
)
for
i
in
range
(
self
.
_extracted_forest_size
))
self
.
_estimator
.
estimators_
=
pruned_forest
def
_prune_forest_job
(
self
,
prune_forest_job_pb
,
c
,
labels
,
X_val
,
y_val
,
score_metric
):
index
=
np
.
where
(
labels
==
c
)[
0
]
with
tqdm_joblib
(
tqdm
(
total
=
len
(
index
),
disable
=
True
))
as
cluster_job_pb
:
cluster
=
Parallel
(
n_jobs
=-
1
)(
delayed
(
self
.
_cluster_job
)(
cluster_job_pb
,
index
[
i
],
X_val
,
y_val
,
score_metric
)
for
i
in
range
(
len
(
index
)))
best_tree_index
=
np
.
argmax
(
cluster
)
prune_forest_job_pb
.
update
()
return
self
.
_estimator
.
estimators_
[
index
[
best_tree_index
]]
def
_cluster_job
(
self
,
cluster_job_pb
,
i
,
X_val
,
y_val
,
score_metric
):
y_val_pred
=
self
.
_estimator
.
estimators_
[
i
].
predict
(
X_val
)
tree_pred
=
score_metric
(
y_val
,
y_val_pred
)
cluster_job_pb
.
update
()
return
tree_pred
def
predict
(
self
,
X
):
return
self
.
_estimator
.
predict
(
X
)
def
score
(
self
,
X
,
y
):
predictions
=
list
()
for
tree
in
self
.
_estimator
.
estimators_
:
predictions
.
append
(
tree
.
predict
(
X
))
predictions
=
np
.
array
(
predictions
)
mean_predictions
=
np
.
mean
(
predictions
,
axis
=
0
)
score
=
self
.
_score_metric
(
mean_predictions
,
y
)
return
score
def
predict_base_estimator
(
self
,
X
):
return
self
.
_estimator
.
predict
(
X
)
Loading